EFFECT OF THE MQL TECHNIQUE ON CUTTING FORCE AND SURFACE QUALITY DURING THE SLOT MILLING OF TITANIUM ALLOY

No Thumbnail Available

Date

2022

Journal Title

Journal ISSN

Volume Title

Publisher

inst Za Kovinske Materiale I in Tehnologie

Research Projects

Organizational Units

Organizational Unit
Manufacturing Engineering
(2003)
Opened in 2003 with the aim to graduate experts in the field of machine-production, our Department is among the firsts in our country to offer education in English. The Manufacturing Engineering program focuses on the manufacturing technologies that shape materials from raw materials to final products by means of analytical, experimental and numerical modeling methods. First Manufacturing Engineering Program to be engineered by Müdek, our department aims to graduate creative and innovative Manufacturing Engineers that are knowledgeable in the current technology, and are able to use production resources in an effective and sustainable way that never disregards environmental facts. As the first Department to implement the Cooperative Education Program at Atılım University in coordination with institutions from the industry, the Manufacturing Engineering offers a practice-oriented approach in education with its laboratory infrastructure and research opportunities. The curriculum at our department is supported by current engineering software, and catered to creating engineers equipped to meet the needs of the production industry.

Journal Issue

Abstract

In this study, the effects of four control parameters, i.e., the cutting speed (v(c)), feed per tooth (f), depth of cut (a(p)), and flow rate of the cutting fluid (Q), on the surface roughness (R-a) and cutting force (F-c) were investigated in the slot milling of titanium alloys (Ti-6A1-4V). The effects of the control parameters were determined by a statistical analysis. In addition, RSM models for R-a and F-c during machining under three cooling/lubrication conditions, i.e., dry, flood, and minimum quantity lubrication (MQL), were obtained. The results revealed that both R-a and F-c are sensitive to changes in f, a(p) and Q. It was found that the MQL condition generates lower values of R-a where the surface roughness value is 0.227 mu m. By contrast. F-c values under the MQL condition were close to those of the flood condition and at times even better. The machining performance at a cutting-fluid flow rate of 36 mL/h under the MQL condition was found to be the best under certain machining conditions. MQL was found to be an effective alternative technique for conventional conditions when machining Ti-6Al-4V.

Description

UNVER, HAKKI OZGUR/0000-0002-4632-3505

Keywords

sustainable manufacturing, titanium, milling, minimum quantity lubrication

Turkish CoHE Thesis Center URL

Citation

0

WoS Q

Q4

Scopus Q

Q4

Source

Volume

56

Issue

1

Start Page

3

End Page

10

Collections