Search Results

Now showing 1 - 8 of 8
  • Article
    Citation - WoS: 15
    Citation - Scopus: 16
    Investigation of Band Gap Energy Versus Temperature for Sns 2 Thin Films Grown by Rf-Magnetron Sputtering
    (Elsevier, 2020) Isik, M.; Gullu, H. H.; Terlemezoglu, M.; Surucu, O. Bayrakli; Parlak, M.; Gasanly, N. M.
    [No Abstract Available]
  • Article
    Citation - WoS: 15
    Citation - Scopus: 15
    Frequency Effect on Electrical and Dielectric Characteristics of In/Cu2< Diode Structure
    (Springer, 2019) Gullu, H. H.; Surucu, O. Bayrakli; Terlemezoglu, M.; Yildiz, D. E.; Parlak, M.
    In/Cu2ZnSnTe4/Si/Ag diode structure was fabricated by sputtering Cu2ZnSnTe4 (CZTTe) thin film layer on the Si layer with In front contact. The frequency dependent room temperature capacitance and conductance measurements were carried out to obtain detailed information of its electrical characteristics. Admittance spectra of the diode exhibited strong frequency dependence and the obtained values showed decreasing behavior with the increase in the applied frequency. The effect of interfacial film layer with series resistance values and density of interface states were investigated by taking into consideration of non-ideal electrical characteristics of the diode. The distribution profile of the interface states was extracted by Hill-Coleman and high-low frequency capacitance methods. As a function of frequency, they were in proportionality with the inverse of applied frequency. Dielectric constant and dielectric loss parameters were calculated from the maximum value of the diode capacitance at the strong accumulation region. The loss tangent showed a characteristic peak behavior at each frequency. Based on the time-dependent response of the interfacial charges to the applied ac field, the values of ac electrical conductivity and complex electric modulus were calculated and discussed as a function of frequency and bias voltage.
  • Article
    Citation - WoS: 10
    Citation - Scopus: 11
    Structural and Temperature-Tuned Bandgap Characteristics of Thermally Evaporated β-in2< Thin Films
    (Springer, 2021) Surucu, O.; Isik, M.; Terlemezoglu, M.; Gasanly, N. M.; Parlak, M.
    In2S3 is one of the attractive compounds taking remarkable interest in optoelectronic device applications. The present study reports the structural and optical characteristics of thermally evaporated beta-In2S3 thin films. The crystalline structure of the thin films was found as cubic taking into account the observed diffraction peaks in the X-ray diffraction pattern. The atomic compositional ratio of constituent elements was obtained as consistent with chemical formula of In2S3. Three peaks around 275, 309 and 369 cm(-1) were observed in the Raman spectrum. Temperature-tuned bandgap energy characteristics of the In2S3 thin films were revealed from the investigation of transmittance spectra obtained at various temperatures between 10 and 300 K. The analyses of the transmittance spectra indicated that direct bandgap energy of the In2S3 thin films decreases from 2.40 eV (at 10 K) to 2.37 eV (at 300 K) with the increase of measurement temperature. The bandgap energy vs. temperature relation was investigated by means of Varshni optical model. The fitting of the experimental data under the light of theoretical expression revealed the absolute zero bandgap energy, the rate of change of bandgap energy and Debye temperature.
  • Article
    Citation - WoS: 5
    Citation - Scopus: 5
    The Effect of Zn Concentration on the Structural and Optical Properties of Cd1-xznx< Nanostructured Thin Films
    (Springer, 2021) Isik, M.; Terlemezoglu, M.; Isik, S.; Erturk, K.; Gasanly, N. M.
    The structural and optical properties of electrodeposited Cd1-xZnxS nanostructured thin films were investigated in the present paper for compositions of x = 0, 0.03, 0.06 and 0.09. X-ray diffraction patterns of the deposited thin films consisted of diffraction peaks related to cubic crystal lattice. The atomic compositional ratios were determined by performing energy dispersive spectroscopy measurements. Scanning electron microscopy images indicated that deposited thin films have nanostructured forms. Raman spectra of the Cd1-xZnxS thin films exhibited two vibrational modes associated with longitudinal optical mode and its first overtone. Transmission measurements were performed on the deposited thin films to get their band gap energies. It was seen from the analyses of absorption coefficient that band gap energy of Cd1-xZnxS thin films increases almost linearly from 2.40 to 2.51 eV as the composition was increased from x = 0 to x = 0.09.
  • Article
    Citation - WoS: 12
    Citation - Scopus: 14
    Investigation of electrical characteristics of Ag/ZnO/Si sandwich structure
    (Springer, 2019) Gullu, H. H.; Surucu, O. Bayrakli; Terlemezoglu, M.; Yildiz, D. E.; Parlak, M.
    In this study, temperature-dependent current-voltage (I-V), frequency-dependent capacitance-voltage (C-V) and conductance-voltage (G/omega-V) measurements are carried out for the electrical characterization of a zinc oxide (ZnO) thin film-based diode. The sandwich structure in the form of Ag/ZnO/Si/Al is investigated at temperatures between 220 and 360 K and in the frequency region of 1 kHz-1 MHz. ZnO thin film layer is deposited on a p-Si wafer substrate as a transparent conductive oxide layer by taking into consideration possible electronic applications with intrinsic attractive material properties. At each temperature step, the I-V curves showed about two orders of magnitude rectifying behavior and, according to the Schottky diode relation, the saturation current, zero-bias barrier height and ideality factor were extracted as a function of the temperature. In the case of non-ideal diode characteristics due to the inhomogeneties in the diode as observed from the characteristics of the calculated parameters, effective barrier height values are evaluated. In addition, based on the existence of the interface layer, density of interface states in the band gap region and parasitic resistances were determined by the capacitance measurements.
  • Article
    Citation - WoS: 12
    Citation - Scopus: 12
    Material and Si-based diode analyses of sputtered ZnTe thin films
    (Springer, 2020) Gullu, H. H.; Surucu, O. Bayrakli; Isik, M.; Terlemezoglu, M.; Parlak, M.
    Structural, optical, and electrical properties ZnTe thin films grown by magnetron sputtering technique were studied by X-ray diffraction, atomic force microscopy, Raman spectroscopy, and electrical conductivity measurements. Structural analyses showed that ZnTe thin films grown on soda-lime glass substrates have a cubic crystalline structure. This crystalline nature of the films was also discussed in terms of Raman active modes. From atomic force microscopy images, the smooth and dense surface profile was observed. The conductivity of the film at room temperature was measured as 2.45 x 10(-4)(omega cm)(-1)and the temperature dependency of conductivity showed Arrhenius behavior. The dark conductivity profile was modeled by thermionic emission mechanism and activation energies were extracted. In addition, the conductivity values indicated an increasing behavior with illumination intensity applied between 20 and 115 mW/cm(2). The heterojunction diode was generated by sputtering ZnTe film on n-Si wafer substrate and the rectification behavior was evaluated to determine the main diode parameters.
  • Article
    Citation - WoS: 6
    Citation - Scopus: 6
    Vibrational Modes in (tlgas2)x< Crystals by Raman Measurements: Compositional Dependence of the Mode Frequencies and Line-Shapes
    (Springer, 2020) Isik, M.; Terlemezoglu, M.; Gasanly, N. M.; Babayeva, R. F.
    TlGaS(2)and TlGaSe(2)ternary semiconducting compounds have been of scientific interest due to their large ultrafast optical nonlinearity characteristics. These remarkable properties make them promising semiconducting materials in photonic applications. A series of (TlGaS2)(x)-(TlGaSe2)(1-x)layered mixed crystals grown by Bridgman method were investigated from the standpoint of their Raman spectroscopy characteristics. Experimental Raman scattering study of crystals were reported in the frequency range of 80-400 cm(-1)for compositions ofx = 0, 0.25, 0.50, 0.75 and 1.0. The effects of crystal disorder on the line-width broadening of Raman-active modes were studied in detail. The asymmetry in the Raman line-shape was analyzed for two highest-frequency intralayer mode presenting two-mode behavior. It was shown that mixed crystal disorder effect is the major source for change of Raman line-shape with composition.
  • Article
    Citation - WoS: 9
    Citation - Scopus: 10
    Cztsse Thin Films Fabricated by Single Step Deposition for Superstrate Solar Cell Applications
    (Springer, 2019) Terlemezoglu, M.; Surucu, O. Bayrakli; Dogru, C.; Gullu, H. H.; Ciftpinar, E. H.; Ercelebi, C.; Parlak, M.
    The focus of this study is the characterization of Cu2ZnSn(S,Se)(4) (CZTSSe) thin films and fabrication of CZTSSe solar cell in superstrate configuration. In this work, superstrate-type configuration of glass/ITO/CdS/CZTSSe/Au was entirely fabricated by totally vacuum-based process. CZTSSe absorber layers were grown by RF magnetron sputtering technique using stacked layer procedure. SnS, CuSe and ZnSe solid targets were used as precursors and no additional step like the selenization process was applied. The structural and morphological properties of deposited CZTSSe layers were analyzed using X-ray diffraction (XRD), Raman scattering, scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy analysis (EDS) measurements. The optical and electrical properties of the CZTSSe thin films were investigated by UV-Vis spectroscopy, Hall-Effect and photoconductivity measurements. In addition, the device performance of the fabricated superstrate solar cell was examined.