Search Results

Now showing 1 - 7 of 7
  • Article
    Citation - WoS: 6
    Citation - Scopus: 5
    Finite Number of Fibre Products of Kummer Covers and Curves With Many Points Over Finite Fields
    (Springer, 2014) Ozbudak, Ferruh; Temur, Burcu Gulmez
    We study fibre products of a finite number of Kummer covers of the projective line over finite fields. We determine the number of rational points of the fibre product over a rational point of the projective line, which improves the results of Ozbudak and Temur (Appl Algebra Eng Commun Comput 18:433-443, 2007) substantially. We also construct explicit examples of fibre products of Kummer covers with many rational points, including a record and two new entries for the current table (http://www.manypoints.org, 2011).
  • Conference Object
    On Fibre Products of Kummer Curves With Many Rational Points Over Finite Fields
    (Springer-verlag Berlin, 2015) Ozbudak, Ferruh; Temur, Burcu Gulmez; Yayla, Oguz
    We determined the number of rational points of fibre products of two Kummer covers over a rational point of the projective line in a recent work of F. Ozbudak and B. G. Temur (Des Codes Cryptogr 70(3): 385-404, 2014), where we also constructed explicit examples, including a record and two new entries for the current Table of Curves with Many Points (manYPoints: Table of curves with many points. http://www.manypoints.org (2014). Accessed 30 Sep 2014). Using the methods given in Ozbudak and Gulmez Temur (Des Codes Cryptogr 70(3): 385-404, 2014), we made an exhaustive computer search over F-5 and F-7 by the contributions of O. Yayla and at the end of this search we obtained 12 records and 6 new entries for the current table; in particular, we observed that the fibre product with genus 7 and 36 rational points coincides with the Ihara bound, thus we concluded that the maximum number N-7(7) of F-7-rational points among all curves of genus 7 is 36 (Ozbudak et al., Turkish J Math 37(6): 908-913, 2013). Recently, we made another exhaustive computer search over F-11. In this paper we are representing the results as three records and three new entries for the current table.
  • Article
    Citation - WoS: 2
    Citation - Scopus: 3
    A Short Note on Permutation Trinomials of Prescribed Type
    (Taylor & Francis inc, 2020) Akbal, Yildirim; Temur, Burcu Gulmez; Ongan, Pinar
    We show that there are no permutation trinomials of the form hox 1/4 x5 ox5oq1 xq1 1 over Fq2 where q is not a power of 2. Together with a result of Zha, Z., Hu, L., Fan, S., hox permutes Fq2 if q 1/4 2k where k 2 omod 4, this gives a complete classification of those q's such that hox permutes F-q(2).
  • Article
    Citation - WoS: 12
    Citation - Scopus: 13
    Classification of Some Quadrinomials Over Finite Fields of Odd Characteristic
    (Academic Press inc Elsevier Science, 2023) Ozbudak, Ferruh; Temur, Burcu Gulmez
    In this paper, we completely determine all necessary and sufficient conditions such that the polynomial f(x) = x3 + axq +2 + bx2q +1 + cx3q, where a, b, c is an element of Fq*, is a permutation quadrinomial of Fq2 over any finite field of odd characteristic. This quadrinomial has been studied first in [25] by Tu, Zeng and Helleseth, later in [24] Tu, Liu and Zeng revisited these quadrinomials and they proposed a more comprehensive characterization of the coefficients that results with new permutation quadrinomials, where char(Fq) = 2 and finally, in [16], Li, Qu, Li and Chen proved that the sufficient condition given in [24] is also necessary and thus completed the solution in even characteristic case. In [6] Gupta studied the permutation properties of the polynomial x3 + axq +2 + bx2q +1 + cx3q, where char(Fq) = 3, 5 and a, b, c is an element of Fq* and proposed some new classes of permutation quadrinomials of Fq2 . In particular, in this paper we classify all permutation polynomials of Fq2 of the form f(x) = x3 + axq +2 + bx2q +1 + cx3q, where a, b, c is an element of Fq*, over all finite fields of odd characteristic and obtain several new classes of such permutation quadrinomials. (c) 2022 Elsevier Inc. All rights reserved.
  • Article
    Citation - WoS: 2
    A Specific Type of Permutation and Complete Permutation Polynomials Over Finite Fields
    (World Scientific Publ Co Pte Ltd, 2020) Ongan, Pinar; Gülmez Temür, Burcu; Temur, Burcu Gulmez; Gülmez Temür, Burcu; Mathematics; Mathematics
    In this paper, we study polynomials of the form f(x) = x (qn-1/q-1+1) + bx is an element of F-qn[x], where n = 5 and list all permutation polynomials (PPs) and complete permutation polynomials (CPPs) of this form. This type of polynomials were studied by Bassalygo and Zinoviev for the cases n = 2 and n = 3, Wu, Li, Helleseth and Zhang for the case n = 4, p not equal 2, Bassalygo and Zinoviev answered the question for the case n = 4, p= 2 and finally by Bartoli et al. for the case n = 6. Here, we determine all PPs and CPPs for the case n = 5.
  • Article
    Citation - WoS: 7
    Citation - Scopus: 10
    Complete Characterization of Some Permutation Polynomials of the Form Xr(1+axs1(q-1)< Over Fq2
    (Springer, 2023) Ozbudak, Ferruh; Temur, Burcu Gulmez
    We completely characterize all permutation trinomials of the form f (x) = x(3)(1 + ax(q-1) + bx(2(q-1))) over F-q2, where a, b is an element of F-q* and all permutation trinomials of the form f (x) = x(3)(1 + bx(2(q-1)) + cx(3(q-1))) over F-q2, where b, c is an element of F-q* in both even and odd characteristic cases.
  • Article
    Citation - WoS: 13
    Citation - Scopus: 12
    Classification of Permutation Polynomials of the Form x3< of Fq2< Where g(x< = x3< + bx Plus c and b, c ∈ Fq<
    (Springer, 2022) Ozbudak, Ferruh; Temur, Burcu Gulmez
    We classify all permutation polynomials of the form x(3) g(x(q-1)) of F-q2 where g(x) = x(3) + bx + c and b, c is an element of F-q*. Moreover we find new examples of permutation polynomials and we correct some contradictory statements in the recent literature. We assume that gcd(3, q -1) = 1 and we use a well known criterion due to Wan and Lidl, Park and Lee, Akbary and Wang, Wang, and Zieve.