4 results
Search Results
Now showing 1 - 4 of 4
Article Citation - WoS: 64Citation - Scopus: 69A Semi-Empirical Approach for Residual Stresses in Electric Discharge Machining (edm)(Elsevier Sci Ltd, 2006) Ekmekci, Bulent; Tekkaya, A. Erman; Erden, AbdulkadirHigh residual stresses are developed on the surfaces of electric discharge machined parts. In this study, layer removal method is used to measure the residual stress profile as a function of depth beneath the surface caused by die sinking type EDM. Cracking and its consequences on residual stresses are also studied on samples machined at long pulse durations. A modified empirical equation is developed for scaling residual stresses in machined surfaces with respect to operating conditions. In this model, a unit amplitude shape function representing change in curvature with respect to removal depth is proposed. The proposed form is found to be a special form of a Gauss Distribution. It is the sum of two Gaussian peaks, with the same amplitude and pulse width but opposite center location. The form can be represented by three constant coefficients. These coefficients depend on the released energy by a power function. (C) 2005 Elsevier Ltd. All rights reserved.Article Citation - WoS: 39Citation - Scopus: 44Application of Continuum Damage Mechanics in Discontinuous Crack Formation: Forward Extrusion Chevron(Wiley-v C H verlag Gmbh, 2008) Soyarslan, Celal; Tekkaya, A. Erman; Akyuz, UgurhanMaterializing Continuum Damage Mechanics (CDM), numerical modeling of discrete internal cracks, namely central bursts, in direct forward extrusion process is presented. Accordingly, in a thermodynamically consistent setting, a local Lemaitre variant damage model with quasi-unilateral evolution is coupled with hyperelastic-plasticity. The formulations are constructed in the principal axes where simultaneous local integration schemes are efficiently developed. To this end, the framework is implemented as ABAQUS/VUMAT subroutine to be used in an explicit FE solution scheme, and utilized in direct forward extrusion simulations for bearing steel, 100Cr6. Discontinuous cracks are obtained with the element deletion procedure, where the elements reaching the critical damage value are removed from the mesh. The periodicity of the cracks shows well accordance with the experimental facts. The investigations reveal that, application of the quasi-unilateral conditions together with the crack closure parameter has an indispensable effect on the damage accumulation zones by determining their internal or superficial character. (C) 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.Article Citation - WoS: 6Citation - Scopus: 10Generalized transient temperature behavior in induction heated workpieces(Elsevier Science Sa, 2009) Okman, Oya; Dursunkaya, Zafer; Tekkaya, A. ErmanElectromagnetic-thermal coupled numerical analysis of induction heating is time intensive if three-dimensional models are used. In this study, by processing the results of finite element computations, a dimensional analysis is carried out to predict the transient temperature rise time at the surface of an induction heated workpiece. A unique set of curves is found that describes the transient dimensionless temperature at a point on the surface as a function of the electromagnetic skin depth alone. The effectiveness of the approach is verified by numerical calculations and comparing the dimensionless temperature curves for different heating cases and materials. Effect of temperature dependent thermal properties is also investigated. The consistency of numerical results is also verified by comparison with experiments. (C) 2009 Elsevier B.V. All rights reserved.Article Citation - WoS: 42Citation - Scopus: 50Numerical Simulation of Various Cross Sectional Workpieces Using Conventional Deep Drawing and Hydroforming Technologies(Elsevier Sci Ltd, 2008) Onder, Erkan; Tekkaya, A. ErmanThis study focuses on the determination of optimum sheet metal forming process and process parameters for various cross sectional workpieces by comparing the numerical results of high-pressure sheet metal forming, hydro-mechanical deep drawing (DD) and conventional DD simulations. Within the range of each cross section, depth, characteristic dimensions ratio and fillet radius have been altered systematically. Steel of types St14 and DC04 have been used as the specimen material in the numerical analyses and the experimental verification throughout the study. All numerical simulations have been carried out by using a dynamic-explicit commercial finite element code and an elasto-plastic material model. During the analyses each workpiece was simulated by the three competing processes. The results of analyses, such as sheet thickness distribution, necking, forming of radii etc., are used for assessing the success of each forming process alternative. The analyses revealed that depending on the workpiece geometry and dimensional properties certain processes are preferable for obtaining more satisfactory products. Working windows for each process have been established based on the analyzed parameters of the circular, elliptic, rectangular and square cross sectional product geometries. This data is expected to be useful for selecting the appropriate production process for a given workpiece geometry and understand the limits of each sheet metal forming processes. (c) 2007 Elsevier Ltd. All rights reserved.

