Application of Continuum Damage Mechanics in discontinuous crack formation: Forward extrusion chevron

No Thumbnail Available

Date

2008

Journal Title

Journal ISSN

Volume Title

Publisher

Wiley-v C H verlag Gmbh

Open Access Color

OpenAIRE Downloads

OpenAIRE Views

Research Projects

Organizational Units

Organizational Unit
Department of Mechatronics Engineering
Our purpose in the program is to educate our students for contributing to universal knowledge by doing research on contemporary mechatronics engineering problems and provide them with design, production and publication skills. To reach this goal our post graduate students are offered courses in various areas of mechatronics engineering, encouraged to do research to develop their expertise and their creative side, as well as develop analysis and design skills.
Organizational Unit
Manufacturing Engineering
(2003)
Opened in 2003 with the aim to graduate experts in the field of machine-production, our Department is among the firsts in our country to offer education in English. The Manufacturing Engineering program focuses on the manufacturing technologies that shape materials from raw materials to final products by means of analytical, experimental and numerical modeling methods. First Manufacturing Engineering Program to be engineered by Müdek, our department aims to graduate creative and innovative Manufacturing Engineers that are knowledgeable in the current technology, and are able to use production resources in an effective and sustainable way that never disregards environmental facts. As the first Department to implement the Cooperative Education Program at Atılım University in coordination with institutions from the industry, the Manufacturing Engineering offers a practice-oriented approach in education with its laboratory infrastructure and research opportunities. The curriculum at our department is supported by current engineering software, and catered to creating engineers equipped to meet the needs of the production industry.

Journal Issue

Abstract

Materializing Continuum Damage Mechanics (CDM), numerical modeling of discrete internal cracks, namely central bursts, in direct forward extrusion process is presented. Accordingly, in a thermodynamically consistent setting, a local Lemaitre variant damage model with quasi-unilateral evolution is coupled with hyperelastic-plasticity. The formulations are constructed in the principal axes where simultaneous local integration schemes are efficiently developed. To this end, the framework is implemented as ABAQUS/VUMAT subroutine to be used in an explicit FE solution scheme, and utilized in direct forward extrusion simulations for bearing steel, 100Cr6. Discontinuous cracks are obtained with the element deletion procedure, where the elements reaching the critical damage value are removed from the mesh. The periodicity of the cracks shows well accordance with the experimental facts. The investigations reveal that, application of the quasi-unilateral conditions together with the crack closure parameter has an indispensable effect on the damage accumulation zones by determining their internal or superficial character. (C) 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Description

Akyuz, Ugurhan/0000-0003-1210-8142; Tekkaya, Erman/0000-0002-5197-2948; Soyarslan, Celal/0000-0003-1029-237X

Keywords

fracture mechanisms (formation of central bursts), damage coupled elasto-plasticity, finite strain, finite elements

Turkish CoHE Thesis Center URL

Fields of Science

Citation

38

WoS Q

Q1

Scopus Q

Source

Volume

88

Issue

6

Start Page

436

End Page

453

Collections