Search Results

Now showing 1 - 2 of 2
  • Article
    Citation - WoS: 13
    Citation - Scopus: 19
    Multiscale Modeling of Tempering of Aisi H13 Hot-Work Tool Steel - Part 2: Coupling Predicted Mechanical Properties With Fem Simulations
    (Elsevier Science Bv, 2016) Eser, A.; Broeckmann, C.; Simsir, C.
    Simulation of austenitization and quenching of steel using the Finite Element Method (FEM) is nowadays a common tool to predict residual stresses and deformations during these processes. However the simulation of tempering, which determines the final residual stresses and distortions has been often neglected or performed in a purely phenomenological and highly simplified way. The objective of this study is to precisely predict the relaxation of internal stresses during tempering, taking explicitly into account the evolution of the microstructure. Mechanical properties which determine the relaxation of stress; namely the drop of the yield stress and the creep mechanism are the key factors for the success of the simulation. These mechanical parameters can be determined experimentally for a specific tempering temperature. However tempering temperature for most steels varies for each industrial application in order to adjust the desired hardness-toughness relation. Consequently, experimentally measurement of decisive mechanical properties which determine the amount of stress relaxation for each tempering temperature is very costly. Therefore, these material parameters were simulated from physically based material models with coupled microstructural simulations in the first part of this two-part investigation. In this part of the study, the simulated mechanical properties will be coupled with the FEM simulations using "Abaqus (R)", in order to simulate the stress relaxation during the tempering process of a thick-walled workpiece made of hot-work tool steel AISI H13 (DIN 1.2344, X40CrMoV5-1). Utilizing this methodology, different tempering conditions (soaking time, tempering temperature) can be considered in the model to predict the stress relaxation in macroscopic scale. (C) 2015 Elsevier B.V. All rights reserved.
  • Conference Object
    Citation - WoS: 3
    Citation - Scopus: 4
    A Potential Solution To Mystical Materials in Indentation Test
    (Elsevier Science Bv, 2017) Billur, E.; Cetin, B.; Music, O.; Simsir, C.; Davut, K.
    Various methods have been designed to determine the elasto-plastic properties of metals. Instrumented indentation test (IIT) is considered to be a good candidate to determine local properties after manufacturing operations. In order to acquire elastoplastic properties from IIT, either dimensional analysis or inverse analysis of the force-displacement curve is performed. However, the major drawback of those methods is the uniqueness of the solution. Some materials may exhibit almost identical force-depth curves, although they have different elastoplastic properties. Those materials are referred as "mystical materials". In this contribution, topological features of the indentation surfaces, i.e. indent size, pile-up and sink-in behaviour, are investigated to find a differentiating property. According to the results, indent size, pile-up and sink-in behaviour may help to find the unique solution to the inverse problem. (C) 2017 The Authors. Published by Elsevier Ltd. Peer-review under responsibility of the scientific committee of the International Conference on the Technology of Plasticity.