Multiscale Modeling of Tempering of Aisi H13 Hot-Work Tool Steel - Part 2: Coupling Predicted Mechanical Properties With Fem Simulations

No Thumbnail Available

Date

2016

Authors

Eser, A.
Şimşir, Caner
Broeckmann, C.
Simsir, C.

Journal Title

Journal ISSN

Volume Title

Publisher

Elsevier Science Bv

Open Access Color

OpenAIRE Downloads

OpenAIRE Views

Research Projects

Organizational Units

Organizational Unit
Manufacturing Engineering
(2003)
Opened in 2003 with the aim to graduate experts in the field of machine-production, our Department is among the firsts in our country to offer education in English. The Manufacturing Engineering program focuses on the manufacturing technologies that shape materials from raw materials to final products by means of analytical, experimental and numerical modeling methods. First Manufacturing Engineering Program to be engineered by Müdek, our department aims to graduate creative and innovative Manufacturing Engineers that are knowledgeable in the current technology, and are able to use production resources in an effective and sustainable way that never disregards environmental facts. As the first Department to implement the Cooperative Education Program at Atılım University in coordination with institutions from the industry, the Manufacturing Engineering offers a practice-oriented approach in education with its laboratory infrastructure and research opportunities. The curriculum at our department is supported by current engineering software, and catered to creating engineers equipped to meet the needs of the production industry.

Journal Issue

Abstract

Simulation of austenitization and quenching of steel using the Finite Element Method (FEM) is nowadays a common tool to predict residual stresses and deformations during these processes. However the simulation of tempering, which determines the final residual stresses and distortions has been often neglected or performed in a purely phenomenological and highly simplified way. The objective of this study is to precisely predict the relaxation of internal stresses during tempering, taking explicitly into account the evolution of the microstructure. Mechanical properties which determine the relaxation of stress; namely the drop of the yield stress and the creep mechanism are the key factors for the success of the simulation. These mechanical parameters can be determined experimentally for a specific tempering temperature. However tempering temperature for most steels varies for each industrial application in order to adjust the desired hardness-toughness relation. Consequently, experimentally measurement of decisive mechanical properties which determine the amount of stress relaxation for each tempering temperature is very costly. Therefore, these material parameters were simulated from physically based material models with coupled microstructural simulations in the first part of this two-part investigation. In this part of the study, the simulated mechanical properties will be coupled with the FEM simulations using "Abaqus (R)", in order to simulate the stress relaxation during the tempering process of a thick-walled workpiece made of hot-work tool steel AISI H13 (DIN 1.2344, X40CrMoV5-1). Utilizing this methodology, different tempering conditions (soaking time, tempering temperature) can be considered in the model to predict the stress relaxation in macroscopic scale. (C) 2015 Elsevier B.V. All rights reserved.

Description

Simsir, Caner/0009-0006-7871-4232

Keywords

Tempering, Quenching, Tool steel, Multiscale simulation, AISI H13

Turkish CoHE Thesis Center URL

Fields of Science

Citation

13

WoS Q

Q3

Scopus Q

Source

Volume

113

Issue

Start Page

292

End Page

300

Collections