3 results
Search Results
Now showing 1 - 3 of 3
Article Citation - WoS: 2Citation - Scopus: 3Physical and Biological Characteristics of Electrospun Poly (vinyl Alcohol) and Reduced Graphene Oxide Nanofibrous Structure(Taylor & Francis Ltd, 2024) Sasmazel, Hilal Turkoglu; Alazzawi, Marwa; Gozutok, Melike; Sadhu, VeeraThe fabrication of graphene-based nanocomposites has been a topic of increasing interest due to graphene's exceptional physical properties and the ability to enhance the properties of various polymeric materials. Evaluating the biocompatibility of these nanocomposites is crucial to ensure their safe and effective use in biomedical applications. This study characterized and assessed the biocompatibility of previously fabricated electrospun polyvinyl alcohol (PVA)/reduced graphene oxide rGO fibrous structures by conducting a comprehensive assessment of their physical and biological characteristics. Contact angle measurements revealed that adding rGO to electrospun PVA fibers enhanced the surface wettability, improving the fibrous structure's PBS absorption capacity and degradation behavior. Including the rGO content resulted in a higher water vapor transmission rate, reaching similar to 48 g/m2day for PVA + 0.5 wt.% rGO and similar to 45 g/m2day for PVA + 1.0 wt.% rGO, compared to similar to 40 g/m2day for electrospun PVA fibers. Cell culture studies, including MTT assay, alkaline phosphatase (ALP) activity analysis, alizarin red staining, fluorescence microscopy, and SEM analyses, demonstrated that electrospun PVA + 1.0 wt.% rGO nanocomposites exhibited superior cell viability, proliferation, and growth compared to other samples, due to the improved physical properties of the PVA + 1.0 wt.% rGO fibrous structure.Article Citation - WoS: 4Citation - Scopus: 5In Vitro Evaluation of Tooth-Colored Yttria Stabilized Zirconia Ceramics(Taylor & Francis Ltd, 2021) Akarsu, Melis Kaplan; Basar, Ahmet Ozan; Sasmazel, Hilal Turkoglu; Park, Jongee; Ozturk, AbdullahEffects of MoCl3 and NiCl2, originally incorporated as coloring agent, on the cellular response of 3 mol% yttria stabilized zirconia (3Y-TZP) ceramics was investigated. MoCl3 and NiCl2-MoCl3 incorporated, tooth-colored 3Y-TZP ceramics were produced through cold isostatic pressing at 100 MPa followed by pressureless sintering at 1450 degrees C for 2 h. Aging was performed on the sintered ceramics using distilled water in a reactor at 134 degrees C at 2.3 bar pressure for 2 h. The phases developed during different stages of processing were identified by X-ray diffraction (XRD) analysis. In vitro cell culture studies were carried out using L929 fibroblast cell line. The cell viability and proliferation studies revealed that none of the specimens showed cytotoxicity with respect to coloring. Confocal laser scanning microscope (CLSM) analyses suggested that all of the specimens exhibited good in vitro cytocompatibility. Enhancement in cell attachment, adhesion, and proliferation was observed in all specimens via scanning electron microscope (SEM) analysis. Although the coloring process did not improve the proliferation performance of the aged specimens, the incorporation of transition metals enhanced the in vitro performance of 3Y-TZP ceramics.Article Citation - WoS: 21Citation - Scopus: 18Dbd Atmospheric Plasma-Modified, Electrospun, Layer-By Polymeric Scaffolds for L929 Fibroblast Cell Cultivation(Taylor & Francis Ltd, 2016) Surucu, Seda; Sasmazel, Hilal TurkogluThis paper reported a study related to atmospheric pressure dielectric barrier discharge (DBD) Ar+O-2 and Ar+N-2 plasma modifications to alter surface properties of 3D PCL/Chitosan/PCL layer-by-layer hybrid scaffolds and to improve mouse fibroblast (L929 ATCC CCL-1) cell attachment, proliferation, and growth. The scaffolds were fabricated using electrospinning technique and each layer was electrospun sequentially on top of the other. The surface modifications were performed with an atmospheric pressure DBD plasma under different gas flow rates (50, 60, 70, 80, 90, and 100sccm) and for different modification times (0.5-7min), and then the chemical and topographical characterizations of the modified samples were done by contact angle (CA) measurements, scanning electron microscopy (SEM), atomic force microscopy, and X-ray photoelectron spectroscopy. The samples modified with Ar+O-2 plasma for 1min under 70cm(3)/min O-2 flow rate (71.077 degrees +/- 3.578) showed a 18.83% decrease compare to unmodified samples' CA value (84.463 degrees +/- 3.864). Comparing with unmodified samples, the average fiber diameter values for plasma-modified samples by Ar+O-2 (1min 70sccm) and Ar+N-2 (40s 70sccm) increased 40.756 and 54.295%, respectively. Additionally, the average inter-fiber pore size values exhibited decrease of 37.699 and 48.463% for the same Ar+O-2 and Ar+N-2 plasma-modified samples, respectively, compare to unmodified samples. Biocompatibility performance was determined with MTT assay, fluorescence, Giemsa, and confocal imaging as well as SEM. The results showed that Ar+O-2-based plasma modification increased the hydrophilicity and oxygen functionality of the surface, thus affecting the cell viability and proliferation on/within scaffolds.

