DBD atmospheric plasma-modified, electrospun, layer-by-layer polymeric scaffolds for L929 fibroblast cell cultivation

No Thumbnail Available

Date

2016

Journal Title

Journal ISSN

Volume Title

Publisher

Taylor & Francis Ltd

Open Access Color

OpenAIRE Downloads

OpenAIRE Views

Research Projects

Organizational Units

Organizational Unit
Metallurgical and Materials Engineering
(2004)
The main fields of operation for Metallurgical and Materials Engineering are production of engineering materials, defining and improving their features, as well as developing new materials to meet the expectations at every aspect of life and the users from these aspects. Founded in 2004 and graduated its 10th-semester alumni in 2018, our Department also obtained MÜDEK accreditation in the latter year. Offering the opportunity to hold an internationally valid diploma through the accreditation in question, our Department has highly qualified and experienced Academic Staff. Many of the courses offered at our Department are supported with various practice sessions, and internship studies in summer. This way, we help our students become better-equipped engineers for their future professional lives. With the Cooperative Education curriculum that entered into effect in 2019, students may volunteer to work at contracted companies for a period of six months with no extensions to their period of study.

Journal Issue

Abstract

This paper reported a study related to atmospheric pressure dielectric barrier discharge (DBD) Ar+O-2 and Ar+N-2 plasma modifications to alter surface properties of 3D PCL/Chitosan/PCL layer-by-layer hybrid scaffolds and to improve mouse fibroblast (L929 ATCC CCL-1) cell attachment, proliferation, and growth. The scaffolds were fabricated using electrospinning technique and each layer was electrospun sequentially on top of the other. The surface modifications were performed with an atmospheric pressure DBD plasma under different gas flow rates (50, 60, 70, 80, 90, and 100sccm) and for different modification times (0.5-7min), and then the chemical and topographical characterizations of the modified samples were done by contact angle (CA) measurements, scanning electron microscopy (SEM), atomic force microscopy, and X-ray photoelectron spectroscopy. The samples modified with Ar+O-2 plasma for 1min under 70cm(3)/min O-2 flow rate (71.077 degrees +/- 3.578) showed a 18.83% decrease compare to unmodified samples' CA value (84.463 degrees +/- 3.864). Comparing with unmodified samples, the average fiber diameter values for plasma-modified samples by Ar+O-2 (1min 70sccm) and Ar+N-2 (40s 70sccm) increased 40.756 and 54.295%, respectively. Additionally, the average inter-fiber pore size values exhibited decrease of 37.699 and 48.463% for the same Ar+O-2 and Ar+N-2 plasma-modified samples, respectively, compare to unmodified samples. Biocompatibility performance was determined with MTT assay, fluorescence, Giemsa, and confocal imaging as well as SEM. The results showed that Ar+O-2-based plasma modification increased the hydrophilicity and oxygen functionality of the surface, thus affecting the cell viability and proliferation on/within scaffolds.

Description

Turkoglu Sasmazel, Hilal/0000-0002-0254-4541

Keywords

PCL, chitosan, electrospinning, DBD atmospheric pressure plasma, L929 fibroblast cell

Turkish CoHE Thesis Center URL

Fields of Science

Citation

19

WoS Q

Q2

Scopus Q

Source

Volume

27

Issue

2

Start Page

111

End Page

132

Collections