4 results
Search Results
Now showing 1 - 4 of 4
Article Citation - WoS: 28Citation - Scopus: 27Photoelectronic and Electrical Properties of Cuin5s8< Single Crystals(Wiley-v C H verlag Gmbh, 2003) Qasrawi, AF; Gasanly, NMTo identify the impurity levels in CuIn5S8 single crystals, the dark electrical conductivity and photoconductivity measurements were carried out in the temperature range of 50-460 K. The data reflect the intrinsic and extrinsic nature of the crystals above and below 300 K, respectively. Energy band gaps of 1.35 and 1.31 eV at 0 K and 300 K, were defined from the dark conductivity measurements and the photocurrent spectra, respectively. The dark and photoconductivity data in the extrinsic temperature region reflect the existence of two independent donor energy levels located at 130 and 16 meV. The photocurrent-illumination intensity dependence (F) follows the law I(ph)alphaF(gamma), with gamma being 1.0, 0.5 and 1.0 at low, moderate and high intensities indicating the domination of monomolecular, bimolecular and strong recombination at the surface, respectively. In the intrinsic region and in the temperature region where the shallow donor energy level 16 meV is dominant, the free electron life time, tau(n), is found to be constant with increasing F. In the temperature region 140 K < T < 210 K, the free electron life time increases with increasing illumination intensity showing the supralinear character. Below 140 K, tau(n) decrease with decreasing illumination intensity. (C) 2003 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.Article Citation - WoS: 26Citation - Scopus: 26Fabrication and Some Physical Properties of Agin5s8< Thin Films(Elsevier Science Sa, 2004) Qasrawi, AF; Kayed, TS; Ercan, IAgIn5S8 thin films are deposited on glass substrates, kept at 300 K, by thermal evaporation of AgIn5S8 single crystals under the pressure of 10-5 Torr. The X-ray fluorescence analysis revealed that the films have a weight percentage of similar to11.5% Ag, 61.17% In, and 27.33% S which corresponds to 1:5:8 stoichiometric composition. X-ray analysis of the films reveals the polycrystalline nature of the films. The lattice parameter (a) of the films was calculated to be 10.784(5) Angstrom. The dark n-type electrical conductivity of the films was measured in the temperature range of 30-350 K. The conductivity data analysis shows that the thermionic emission of the charge carriers having activation energies of 147 and 224 meV in the temperature ranges of 130-230 and 240-350 K, respectively, are the dominant transport mechanism in the films. The variable range hopping transport mechanism is dominant below 130 K. The room temperature photocurrent-photon energy dependency predicts a band gap of 1.91 eV of the films. The illumination intensity-photocurrent dependency measured in the intensity range of 13-235 W cm(-2) reveals monomolecular recombination (linear) in the films and bimolecular recombination (sublinear) at the film surface corresponding to low and high applied illumination intensities, respectively. The time-dependant photocurrent measured at fixed illumination intensity reveals a response time of 0.85, 2.66 and 10.0 s in the time periods of 0-0.5, 0.5-1.0, and 1.0-10.0 s, respectively. (C) 2004 Elsevier B.V. All rights reserved.Article Citation - WoS: 11Cd-Doping Effects on the Properties of Polycrystalline Α-in2se3< Thin Films(Wiley-v C H verlag Gmbh, 2002) Qasrawi, AFThe X-ray diffraction has revealed that the polycrystalline hexagonal structured alpha-In2Se3 thin films grown at substrate temperature of 200degreesC with the unit cell parameters a=4.03degreesA and c=19.23degreesA becomes polycrystalline hexagonal structured InSe with a unit cell parameters of a=4.00degreesA and c=16.63degreesA by Cd-doping. The analysis of the conductivity temperature dependence in the range 300-40 K revealed that the thermionic emission of charged carriers and the variable range hopping are the predominant conduction mechanism above and below 100 K, respectively. Hall measurements revealed that the mobility is limited by the scattering of charged carriers through the grain boundaries above 200 K and 120 K for the undoped and Cd-doped samples, respectively. The photocurrent (I-ph) increases with increasing illumination intensity (T) and decreasing temperature up to a maximum temperature of similar to100 K, below which I-ph is temperature invariant. It is found to have the monomolecular and bimolccular recombination characters at low and high illumination intensities, respectively. The Cd-doping increases the density of trapping states that changes the position of the dark Fermi level leading to the deviation from linearity in the dependence of I-ph on F at low illumination intensities.Article Citation - WoS: 18Citation - Scopus: 19Crystal Data, Photoconductivity and Carrier Scattering Mechanisms in Cuin5s8< Single Crystals(Wiley-v C H verlag Gmbh, 2001) Qasrawi, AF; Gasanly, NMThe X-ray diffraction has revealed that CuIn5S8 is a single phase crystal of cubic spinet structure. The value of the unit cell parameter for this crystal is 1.06736 nm. The crystal is assigned to the conventional space group Fd3m. The photocurrent is found to have the characteristic of monomolecular and bimolecular recombination at low and high illumination intensities, respectively. The electrical resistivity and Hall effect of CuIn5S8 crystals are measured in the temperature range of 50-400 K. The crystals are found to be intrinsic and extrinsic above and below 300 K, respectively. An energy band gap of similar to1.35 eV at 0 K, a carrier effective mass of 0.2 m(0), an acceptor to donor concentration ratio of 0.9, an acoustic phonon deformation potential of 10 eV and a nonpolar optical phonon deformation potential of 15 eV are identified from the resistivity and Hall measurements. The Hall mobility data are analyzed assuming the carrier scattering by polar optical phonons, acoustic combined with nonpolar optical phonons, and ionized impurities.

