Cd-Doping Effects on the Properties of Polycrystalline Α-in<sub>2</Sub>se<sub>3< Thin Films

No Thumbnail Available

Date

2002

Authors

Qasrawı, Atef Fayez Hasan

Journal Title

Journal ISSN

Volume Title

Publisher

Wiley-v C H verlag Gmbh

Open Access Color

OpenAIRE Downloads

OpenAIRE Views

Research Projects

Organizational Units

Organizational Unit
Department of Electrical & Electronics Engineering
Department of Electrical and Electronics Engineering (EE) offers solid graduate education and research program. Our Department is known for its student-centered and practice-oriented education. We are devoted to provide an exceptional educational experience to our students and prepare them for the highest personal and professional accomplishments. The advanced teaching and research laboratories are designed to educate the future workforce and meet the challenges of current technologies. The faculty's research activities are high voltage, electrical machinery, power systems, signal and image processing and photonics. Our students have exciting opportunities to participate in our department's research projects as well as in various activities sponsored by TUBİTAK, and other professional societies. European Remote Radio Laboratory project, which provides internet-access to our laboratories, has been accomplished under the leadership of our department with contributions from several European institutions.

Journal Issue

Abstract

The X-ray diffraction has revealed that the polycrystalline hexagonal structured alpha-In2Se3 thin films grown at substrate temperature of 200degreesC with the unit cell parameters a=4.03degreesA and c=19.23degreesA becomes polycrystalline hexagonal structured InSe with a unit cell parameters of a=4.00degreesA and c=16.63degreesA by Cd-doping. The analysis of the conductivity temperature dependence in the range 300-40 K revealed that the thermionic emission of charged carriers and the variable range hopping are the predominant conduction mechanism above and below 100 K, respectively. Hall measurements revealed that the mobility is limited by the scattering of charged carriers through the grain boundaries above 200 K and 120 K for the undoped and Cd-doped samples, respectively. The photocurrent (I-ph) increases with increasing illumination intensity (T) and decreasing temperature up to a maximum temperature of similar to100 K, below which I-ph is temperature invariant. It is found to have the monomolecular and bimolccular recombination characters at low and high illumination intensities, respectively. The Cd-doping increases the density of trapping states that changes the position of the dark Fermi level leading to the deviation from linearity in the dependence of I-ph on F at low illumination intensities.

Description

Keywords

thin film, XRD, conductivity, mobility, photocurrent, monomolecular, bimolecular

Turkish CoHE Thesis Center URL

Fields of Science

Citation

12

WoS Q

Q3

Scopus Q

Q3

Source

Volume

37

Issue

4

Start Page

378

End Page

390

Collections