Crystal data, photoconductivity and carrier scattering mechanisms in CuIn<sub>5</sub>S<sub>8</sub> single crystals

No Thumbnail Available

Date

2001

Journal Title

Journal ISSN

Volume Title

Publisher

Wiley-v C H verlag Gmbh

Research Projects

Organizational Units

Organizational Unit
Department of Electrical & Electronics Engineering
Department of Electrical and Electronics Engineering (EE) offers solid graduate education and research program. Our Department is known for its student-centered and practice-oriented education. We are devoted to provide an exceptional educational experience to our students and prepare them for the highest personal and professional accomplishments. The advanced teaching and research laboratories are designed to educate the future workforce and meet the challenges of current technologies. The faculty's research activities are high voltage, electrical machinery, power systems, signal and image processing and photonics. Our students have exciting opportunities to participate in our department's research projects as well as in various activities sponsored by TUBİTAK, and other professional societies. European Remote Radio Laboratory project, which provides internet-access to our laboratories, has been accomplished under the leadership of our department with contributions from several European institutions.

Journal Issue

Abstract

The X-ray diffraction has revealed that CuIn5S8 is a single phase crystal of cubic spinet structure. The value of the unit cell parameter for this crystal is 1.06736 nm. The crystal is assigned to the conventional space group Fd3m. The photocurrent is found to have the characteristic of monomolecular and bimolecular recombination at low and high illumination intensities, respectively. The electrical resistivity and Hall effect of CuIn5S8 crystals are measured in the temperature range of 50-400 K. The crystals are found to be intrinsic and extrinsic above and below 300 K, respectively. An energy band gap of similar to1.35 eV at 0 K, a carrier effective mass of 0.2 m(0), an acceptor to donor concentration ratio of 0.9, an acoustic phonon deformation potential of 10 eV and a nonpolar optical phonon deformation potential of 15 eV are identified from the resistivity and Hall measurements. The Hall mobility data are analyzed assuming the carrier scattering by polar optical phonons, acoustic combined with nonpolar optical phonons, and ionized impurities.

Description

Gasanly, Nizami/0000-0002-3199-6686; Qasrawi, Atef Fayez/0000-0001-8193-6975; Gasanly, Nizami/0000-0002-3199-6686

Keywords

CuIn5S8 crystal, photocurrent, resistivity, mobility, acoustic, polar, scattering mechanism

Turkish CoHE Thesis Center URL

Citation

19

WoS Q

Q3

Scopus Q

Source

Volume

36

Issue

12

Start Page

1399

End Page

1410

Collections