3 results
Search Results
Now showing 1 - 3 of 3
Article Citation - WoS: 4Citation - Scopus: 4Physical Characterization of Thermally Evaporated Sn-Sb Thin Films for Solar Cell Applications(Springer Heidelberg, 2023) Bektas, Tunc; Surucu, Ozge; Terlemezoglu, Makbule; Parlak, MehmetThe substitution of Sb in binary SnSe structure may lead to tailoring the physical properties of both SnSe and SbSe, promising absorber layers for thin film solar cells. The resulting Sn-Sb-Se structure could be an outstanding material for photovoltaic applications. In this study, Sn-Sb-Se thin films were deposited by thermal evaporation, and the effect of annealing on the films' structural, optical, and electrical properties were reported. XRD measurement shows that annealing at 300 degrees C yields the best crystalline quality, and structural parameters were calculated using XRD data. SEM and AFM measurements indicate deformation in the film surface after annealing at 400 degrees C. UV-Vis spectroscopy measurement provides a high absorption coefficient which indicates a direct band gap. The band gap and activation energies of the as-grown sample were found as 1.59 eV and 106.1 meV, respectively. The results of SEM, AFM, XRD, Raman, UV-Vis spectroscopy and temperature-dependent photoconductivity measurements were discussed throughout the paper.Article Citation - WoS: 5Citation - Scopus: 5Performance Analysis of Cusbse2 Thin-Film Solar Cells With Cd-Free Window Layers(Elsevier, 2024) Surucu, Gokhan; Bal, Ersin; Gencer, Aysenur; Parlak, Mehmet; Surucu, OzgeThis study investigates novel thin-film solar cells featuring CuSbSe2 (CASe) with ZnSnO and ZnMgO windows in the layer superstrate structure. For glass/ITO/ZnMgO/CASe/Cu + Au, the J-V measurements reveal a shortcircuit current density (Jsc) of 19.4 mA/cm2, an open-circuit voltage (Voc) of 0.28 Volts, a fill factor (FF) of 39.14 %, and a power conversion efficiency (eta) of 2.13 %. Similarly, glass/ITO/ZnSnO/CASe/Cu + Au exhibits Jsc around 19.6 mA/cm2, Voc around 0.31 Volts, FF around 40 %, and eta of 2.43 %. This paper is a pioneering contribution, introducing novel thin-film solar cells with a distinctive superstrate structure utilizing CASe in conjunction with ZnSnO and ZnMgO windows. The comprehensive study presents the first-ever characterization and performance evaluation of these innovative configurations, shedding light on their unique potential in advancing sustainable solar energy technology.Article Citation - WoS: 39Citation - Scopus: 39Illumination and Voltage Effects on the Forward and Reverse Bias Current-Voltage (i-V) Characteristics in In/In2< Photodiodes(Springer, 2021) Yukselturk, Esra; Surucu, Ozge; Terlemezoglu, Makbule; Parlak, Mehmet; Altindal, SemsettinThe illumination and voltage effects on the I-V measurements of the fabricated In/In2S3/p-Si photodiode were investigated in dark and under various illumination intensities (20-100 mW/cm(2)) between +/- 2 V. Two linear regions in the forward-bias ln(I)-V plots were observed. The value of diode ideality factor (n) had an increasing trend with increasing illumination intensity while the barrier height (phi(Bo)) had a decreasing trend due to the increase of photocurrent. The photodiode properties were also investigated, and the value of linear-dynamic value range (LDR) was found to be 20.56 dB. The photoresponse (I-ph/I-dark), the photoresponsivity (R), and specific detectivity (D*) of the photodiode were calculated as a function of the illumination. The open-circuit voltage (V-oc) and short-current (I-sc) were found to be 0.36 V and 2.87 mA under 100 mW.cm(-2) illumination intensity, respectively. The possible conduction mechanisms (CMs) were investigated using the forward ln(I)-V and reverse ln(I)-V-0.5 plots. The energy-dependent surface states (N-ss) profile was extracted from the positive I-V data by considering voltage-dependent barrier height (BH) and ideality factor (n) in dark and illumination at 100 mW/cm(2).

