19 results
Search Results
Now showing 1 - 10 of 19
Article Citation - WoS: 24Citation - Scopus: 25A Novel Conducting Polymer Based on Terthienyl System Bearing Strong Electron-Withdrawing Substituents and Its Electrochromic Device Application(Elsevier Science Sa, 2008) Asil, Demet; Cihaner, Atilla; Algi, Fatih; Onal, Ahmet M.A novel conducting polymer bearing strong electron-withdrawing substituents (EWS) directly attached to the 3,4-positions of the thiophene ring was synthesized by electrochemical polymerization of diethyl 2,5-di(thiophen-2-yl)thiophene-3,4-dicarboxylate (SSS-Diester). The polymer (PSSS-Diester) was characterized by cyclic voltammetry, FT-IR and UV-vis spectroscopy. The polymer has a reversible redox process and demonstrates a stable electrochromic behavior: reddish orange in the neutral state, brown in the intermediate state and green in the oxidized state. Optical density and response time of the dual-type electrochromic device based on PSSS-Diester were found to be 0.23 and 0.6 s at 623 nm, respectively. It is also noteworthy that the device shows good environmental and redox stability (i.e. 94% of the optical activity of the device retained after 500th switch). (c) 2008 Elsevier B.V. All rights reserved.Article Citation - WoS: 52Citation - Scopus: 59Furan and benzochalcogenodiazole based multichromic polymers via a donor-acceptor approach(Royal Soc Chemistry, 2013) Icli-Ozkut, Merve; Ipek, Halil; Karabay, Baris; Cihaner, Atilla; Onal, Ahmet M.Two new furan and benzochalcogenodiazole based monomers, namely 4,7-di(furan-2-yl) benzo[c][1,2,5]-selenadiazole (FSeF) and 4,7-di(furan-2-yl) benzo[c][1,2,5]thiadiazole (FSF), were designed and synthesized via a donor-acceptor-donor approach. The monomers were electrochemically polymerized via potentiodynamic or potentiostatic methods. The monomers and their polymers exhibited lower oxidation potentials (1.16 V and 1.06 V for monomers; 0.93 V and 0.80 V for polymers vs. Ag/AgCl) and red shifts of the whole dual-band absorption spectra upon moving from S to Se. Intramolecular charge transfer properties of the monomers and the polymers were demonstrated by using electroanalytical and optical methods. Also, the polymers PFSeF and PFSF were multicolored at different redox states and have low band gaps of 1.43 eV and 1.61 eV, respectively.Article Citation - WoS: 94Citation - Scopus: 100A New Soluble Neutral State Black Electrochromic Copolymer Via a Donor-Acceptor Approach(Elsevier, 2010) Icli, Merve; Pamuk, Melek; Algi, Fatih; Onal, Ahmet M.; Cihaner, AtillaTwo donor-acceptor systems, 2-decyl-4,7-bis(3,3-didecyl-3,4-dihydro-2H-thieno[3,4-b][1,4]dioxepin-6-yl)-2H-benzo[d][1,2,3]triazole (1) and 4,7-bis(3,3-didecyl-3,4-dihydro-2H-thieno[3,4-b][1,4]dioxepin-6-yl)-2,1,3-benzoselenadiazole (2) are explored in order to attain a low bandgap black polymer electrochrome, which is highly difficult to attain due to the complexity of designing such materials. Electrochemical polymerization of 1 and 2 in 1:4 monomer feed ratio was performed in a mixture of acetonitrile and dichloromethane solution containing 0.1 M tetrabutylammonium hexafluorophosphate. It was found that electropolymerization provides a processable neutral state black copolymer, (P(1-co-2)), which absorbs virtually the whole visible spectrum (400-800 nm). (P(1-co-2)) is the first low bandgap (1.45 eV) electropolymerized material, which switches from black color (L = 14.3, a = 0.29, b = 0.35) in the neutral state to transmissive grey (L = 39.2, a = 0.29, b = 0.33) in the oxidized state with 15.3% of the transmittance change at 522 nm. Furthermore, it exhibits excellent operational and/or environmental stability under ambient conditions. (c) 2010 Elsevier B.V. All rights reserved.Article Citation - WoS: 24Citation - Scopus: 23Synthesis and Electrochemical Polymerization of D-A Type Monomers With Thieno [3,4-c] Pyrrole-4,6 Acceptor Unit(Elsevier Sci Ltd, 2018) Cakal, Deniz; Ertan, Salih; Cihaner, Atilla; Onal, Ahmet M.In this study, three new donor-acceptor-donor type monomers bearing 1,3-dibromo-5-(2-ethylhexyl)-4H-thieno [3,4-c]pyrrole- 4,6(5H)-dione (A) as an acceptor unit and thiophene, 3,4-ethylenedioxythiophene (EDOT) and 3,3-didecy1-3,4-dihydro-2H-thieno[3,4-b][1,4]dioxepine (didecyl-ProDOT) as donor units were synthesized via Stille cross-coupling reaction and their electrochemical polymerization by repetitive cycling was reported. The electrochemical and optical properties of the monomers ((5-(2-ethyl-liexyl)-1,3-di(thienyl-2-yl)-4H-thienolr-3,4-cl pyrrole-4,6(5H)-dione (TAT), 1,3-bis(2,3-dihydrothieno[3,4-1)] (1,4]dioicin-5-yl)-5-(2-ethylhexyl)-4H-thieno(3,4-c) pyrrole-4,6-(5H)-dione (EAE) and 1,3-bis(3,3-didecyl-3,4-dihydro-2H-thieno[3,4-1)111,41-dioxepin-6-yl)-5-(2-ethylhexyl)-4H-thieno[3,4-apyrrole-4,6(5H)-dione (PAP)) and their corresponding polymers called PTAT, PEAE and PPAP were investigated and it was found that EDOT units containing monomer and polymer (EAE and PEAE) have lower oxidation potentials and lower band gap value as compared to didecyl-ProDOT and thiophene units containing monomers and polymers (PAP, TAT and PPAP, PTAT). Spectroelectrochemical investigations conducted on electrochemically obtained polymer films revealed that polymer films exhibited electrochromic behaviors: brick red to gray for PTAT, blue/violet to highly sky blue for PEAE and blue to highly light blue for PPAP in their neutral and oxidized states, respectively. Moreover, PAP was also polymerized chemically using FeC13 as an oxidizing agent. Both chemically and electrochemically obtained PPAP were found to be soluble in some organic solvents and their dichloromethane solutions can be reversibly oxidized and reduced using antimony pentachloride and hydrazine hydrate solutions, respectively.Article Citation - WoS: 27Citation - Scopus: 27Electrochromic performance and ion sensitivity of a terthienyl based fluorescent polymer(Elsevier, 2010) Atilgan, Nurdan; Cihaner, Atilla; Onal, Ahmet M.A novel terthienyl based fluorescent polymer bearing strong electron-withdrawing substituents directly attached to the 3,4-positions of the central thiophene ring was synthesized by electrochemical polymerization of diethyl 2,5-di(3,4-ethylenedioxythiophen-2-yl)thiophene-3,4-dicarboxylate. The corresponding polymer was characterized by cyclic voltammetry, FT-IR and UV-vis spectroscopy. The polymer has a well-defined redox process (E-p,E-1/2 = 0.74 V) and demonstrates a reversible electrochromic behavior; lilac in the neutral state and transparent sky blue in the oxidized state. Also, the polymer had low band gap (E-g = 1.82 eV) and high redox stability (retaining 94.0% of its electro-activity after 500th switch). Moreover, the sensitivity of both the monomer and its polymer towards metal cations was investigated by monitoring the change in the fluorescence intensity. Among various common ions both the monomer and its polymer were found to be selective towards Cu2+ and Cu+ ions by quenching the fluorescence efficiency with a Stern-Volmer constant (K-sv) of (1.4-1.6 x 10(3) M-1) and (1.5-1.8 x 10(2) M-1) for monomer and polymer solutions, respectively. (c) 2010 Elsevier Ltd. All rights reserved.Article Citation - WoS: 2Citation - Scopus: 3Impedance Spectroscopy of N-Substituted Oligo-Oxyethylene Polypyrrole Films(John Wiley & Sons inc, 2008) Cihaner, Atilla; Onal, Ahmet M.The electrochemical properties of neutral (dedoped) and oxidized (doped) poly(1,11-bis(1,1-pyrrole)-3,6,9-trioxaundecane) (poly-I) film electrodes were investigated using cyclic voltammetry and electrochemical impedance spectroscopy (EIS) techniques. Poly-I was deposited on glassy carbon electrode (GCE) from acetonitrile solution containing 5.0 x 10(-3) M 1,11-bis(1,1-pyrrole)-3,6,9-trioxaundecane (I) and 0.1 M LiClO4 supporting electrolyte. Doped poly-I exhibits a single semicircle in its complex-capacitance plots, indicating a single dominant ion transport process, together with high capacitance values. These features make this polymer film a candidate for an energy storage material. Also, poly-I can be a candidate as a sensory material for the detection of Ag+ based on impedance parameters. (C) 2008 Wiley Periodicals, Inc.Article Citation - WoS: 11Citation - Scopus: 11Electrochemical and Optical Properties of Substituted Phthalimide Based Monomers and Electrochemical Polymerization of 3,4-Ethylenedioxythiophene Oligomeric Silsesquioxane (poss) Analogue(Elsevier Sci Ltd, 2019) Cakal, Deniz; Ertan, Salih; Cihaner, Atilla; Onal, Ahmet M.A new series of donor-acceptor-donor type trimeric monomers bearing substituted phthalimide units as acceptor units and thiophene and 3,4-ethylenedioxythiophene (EDOT) as donor units was synthesized and characterized. The strength of acceptor units and intramolecular charge transfer between donor and acceptor units were investigated by using electrochemical and optical methods. The main advantage of phthalimide unit over other acceptor units is the ease of its functionalizability. Thus, utilizing this property, a phthalimide derivative (E2P-POSS) bearing polyhedral oligomeric silsesquioxane (POSS) cage was introduced successfully with EDOT and polymerized electrochemically. The corresponding electroactive polymer, PE2P-POSS, has a band gap of 1.72 eV and is an electrochromic polymer: gray when neutralized and eggplant purple when oxidized.Article Citation - WoS: 14Citation - Scopus: 12Electrochemical Synthesis of New Conjugated Polymers Based on Carbazole and Furan Units(Elsevier Science Sa, 2015) Oguzturk, H. Esra; Tirkes, Seha; Onal, Ahmet M.In this study, synthesis of four new monomers; 3,6-di(2-furyl)-9H-carbazole (M1), 3,6-di(2-furyl)-9-ethyl-carbazole (M2), 2,7-di(2-furyl)-9-H-carbazole (M3), 2,7-di(2-furyl)-9-(tridecan-7-yl)-9H-carbazole (M4), was achieved via Stifle cross-coupling reaction. The monomers were electrochemically polymerized, via repetitive cycling in acetonitrile-tetrabutylammonium hexafluorophosphate electrolytic medium. Optical and electrochemical properties of the monomers and their corresponding polymers were investigated and it was found that optical properties show slight variations depending on the connectivity between the carbazole and furan moieties. However, all the monomers synthesized in this work exhibited an irreversible oxidation peak at around 1.0 V. Electrochemically obtained polymer films, on the other hand, exhibited quasi-reversible redox behavior due to doping/dedoping of the polymers which was accompanied by a reversible electrochromic behavior. Their band gap values (E-g) were elucidated utilizing spectroelectrochemical data and it was found that polymers obtained from 2,7-substituted carbazole derivatives have slightly lower band gap values. Furthermore, scanning electron micrographs were used for morphological examinations. (C) 2015 Elsevier B.V. All rights reserved.Article Citation - WoS: 30Citation - Scopus: 32Effect of Fluorine Substituted Benzothiadiazole on Electro-Optical Properties of Donor-Acceptor Type Monomers and Their Polymers(Elsevier Sci Ltd, 2020) Cakal, Deniz; Ercan, Yunus Emre; Onal, Ahmet M.; Cihaner, AtillaA series of trimeric monomers bearing thiophene donor units and fluorinated analogues of benzothiadiazole acceptor units was synthesized via donor-acceptor-donor approach and polymerized electrochemically in order to investigate the effect of fluorine atom on electro-optical properties of both monomers and their corresponding polymers. All monomers exhibited solvatochromic and fluorescent properties. The introduction of fluorine atom into the conjugated backbone increased the oxidation potentials. Upon moving from nonfluorinated to fully fluorinated analogues, the oxidation potential shifts anodically from 1.30 V to 1.7 V. As in the case of monomers, the fluorine atom substitution also resulted in a decrease in the HOMO energy level of the corresponding polymers, leading to an increase in the electrochemical band gap energy (1.71-1.97 eV). This result can be attributed to deviations from planarity and also to decrease in the effective conjugation length. The polymeric film also exhibited electrochromic properties under various external potentials. Switching time and coloration efficiency values decreased with increasing number of fluorine atom substitution.Article Citation - WoS: 6Citation - Scopus: 6Side Chain Effect on the Electrochemical and Optical Properties of Thieno[3,4-c]pyrrole-4,6-dione Based Donor-Acceptor Donor Type Monomers and Polymers(Royal Soc Chemistry, 2023) Cakal, Deniz; Arabaci, Elif Demir; Yildirim, Erol; Cihaner, Atilla; Onal, Ahmet M.In organic pi-conjugated materials, side chains play great roles that impact far beyond solubility. In this work, we mainly focused on the synthesis of new donor-acceptor-donor (D-A-D) type conjugated monomers and their corresponding polymers appending thieno[3,4-c]pyrrole-4,6-dione (TPD) acceptor with a new side chain, fluorene (Fl), to investigate the side chain effect. In this context, to reveal the precise effect of the side chains on the optical and electrochemical properties of the monomers and polymers synthesized in this work, four series of D-A-D monomers, each containing a TPD core unit with a different side chain, are compared and discussed in relation to each other. Notably, it was discovered that the TPD acceptor unit can be modified with any functional group other than common alkyl chains to impart new functionalities by maintaining their superior optoelectronic properties. New types of side chains can be used to tune the physical characteristics, such as solubility, absorption, emission, and molecular packing. In this work, Fl-appended monomers as a new class of D-A-D type pi-conjugated molecules containing 3,4-ethylenedioxythiophene (EDOT (E)) and 3,4-propylenedioxythiophene (ProDOT (P)) donor units were studied and it was found that 1,3-bis(2,3-dihydrothieno[3,4-b][1,4]dioxin-5-yl)-5-(9H-fluoren-2-yl)-4H-thieno[3,4-c]pyrrole-4,6(5H)-dione (E(Fl)) and 1,3-bis(3,3-didecyl-3,4-dihydro-2H-thieno[3,4-b][1,4]dioxepin-6-yl)-5-(9H-fluoren-2-yl)-4H-thieno[3,4-c]pyrrole-4,6(5H)-dione (P(Fl)) exhibited reasonable quantum yields and their corresponding polymers revealed ambipolar character with slightly lower band gap as compared to the previous analogues containing other side chains. Observed experimental results were elucidated by first principle calculations. In this paper, we discussed that using side chain engineering is an effective strategy for improving next-generation organic pi-conjugated materials with the desired properties.

