3 results
Search Results
Now showing 1 - 3 of 3
Article Citation - WoS: 7Citation - Scopus: 10Combined Use of Ultrasonic-Assisted Drilling and Minimum Quantity Lubrication for Drilling of Niti Shape Memory Alloy(Taylor & Francis inc, 2023) Namlu, Ramazan Hakki; Lotfi, Bahram; Kilic, S. Engin; Yilmaz, Okan Deniz; Akar, SametThe drilling of shape-memory alloys based on nickel-titanium (Nitinol) is challenging due to their unique properties, such as high strength, high hardness and strong work hardening, which results in excessive tool wear and damage to the material. In this study, an attempt has been made to characterize the drillability of Nitinol by investigating the process/cooling interaction. Four different combinations of process/cooling have been studied as conventional drilling with flood cooling (CD-Wet) and with minimum quantity lubrication (CD-MQL), ultrasonic-assisted drilling with flood cooling (UAD-Wet) and with MQL (UAD-MQL). The drill bit wear, drilling forces, chip morphology and drilled hole quality are used as the performance measures. The results show that UAD conditions result in lower feed forces than CD conditions, with a 31.2% reduction in wet and a 15.3% reduction in MQL on average. The lowest feed forces are observed in UAD-Wet conditions due to better coolant penetration in the cutting zone. The UAD-Wet yielded the lowest tool wear, while CD-MQL exhibited the most severe. UAD demonstrated a & SIM;50% lower tool wear in the wet condition than CD and a 38.7% in the MQL condition. UAD is shown to outperform the CD process in terms of drilled-hole accuracy.Article Citation - WoS: 24Citation - Scopus: 25Machining Performance and Sustainability Analysis of Al2o3< Hybrid Nanofluid Mql Application for Milling of Ti-6al(Taylor & Francis inc, 2024) Lotfi, Bahram; Namlu, Ramazan Hakki; Kilic, S. EnginMachining of Ti-6Al-4V presents challenges due to its low thermal conductivity, and conventional cutting fluids (CCF) are inadequate in providing a productive and sustainable solution. This study aims to achieve more sustainable and productive machining of Ti-6Al-4V by utilizing Al2O3 and CuO-added Nanofluid Minimum Quantity Lubrication (NMQL) individually and in hybrid form with different concentrations. A comparison is made with pure-MQL, CCF and dry conditions. The study consists of three stages. In the first stage, the physical properties of the coolants, like contact angle and surface tension, are investigated. The second stage involves slot milling operations, and various outputs including cutting forces, surface roughness, surface topography, surface finish, and subsurface microhardness are analyzed. In the last stage, a sustainability analysis is conducted based on the Pugh Matrix Approach. The results indicate that Al2O3-NMQL exhibits lower contact angles and surface tensions compared to other conditions. Furthermore, HNMQL applications result in lower cutting forces (up to 46.5%), surface roughness (up to 61.2%), and microhardness (up to 6.6%), while yielding better surface finish and topography compared to CCF. The sustainability analysis demonstrates that HNMQL application is the most suitable option for achieving sustainable machining of Ti-6Al-4V.Article Citation - WoS: 26Citation - Scopus: 31An Experimental Investigation on the Effects of Combined Application of Ultrasonic Assisted Milling (uam) and Minimum Quantity Lubrication (mql) on Cutting Forces and Surface Roughness of Ti-6al(Taylor & Francis inc, 2021) Namlu, Ramazan Hakki; Sadigh, Bahram Lotfi; Kilic, Sadik EnginTi-6Al-4V is widely used in aerospace, medical and defense industries where materials with superior characteristics are needed. However, Ti-6Al-4V is categorized as a difficult-to-cut material, and machining of this alloy is highly challenging. Ultrasonic Assisted Milling (UAM) is a quite recent method to facilitate the machining of difficult-to-cut materials. This method has numerous advantages over the Conventional Milling (CM) method, such as reduced cutting forces and increased surface quality. Besides, Minimum Quantity Lubrication (MQL) is an alternative cooling method to enhance the process efficiency with respect to conventional cooling methods. Cutting force and surface roughness are essential measures to evaluate the cutting performance of a machining process. However, the simultaneous effects of implementing MQL and ultrasonic vibrations in milling operations are not much researched yet. In this study, the combined effects of UAM and MQL on cutting forces and surface roughness during the machining of Ti-6AL-4V are investigated. Results show that the combination of MQL and UAM enhances the cutting forces in rough cutting operations and the surface roughness in both finish and rough cutting operations significantly compared to conventional processes. Consequently, it is concluded that simultaneous implementation of UAM and MQL enhances overall cutting performance in end-milling operation of Ti-6Al-4V.

