Combined use of ultrasonic-assisted drilling and minimum quantity lubrication for drilling of NiTi shape memory alloy
Loading...
Date
2023
Journal Title
Journal ISSN
Volume Title
Publisher
Taylor & Francis inc
Open Access Color
OpenAIRE Downloads
OpenAIRE Views
Abstract
The drilling of shape-memory alloys based on nickel-titanium (Nitinol) is challenging due to their unique properties, such as high strength, high hardness and strong work hardening, which results in excessive tool wear and damage to the material. In this study, an attempt has been made to characterize the drillability of Nitinol by investigating the process/cooling interaction. Four different combinations of process/cooling have been studied as conventional drilling with flood cooling (CD-Wet) and with minimum quantity lubrication (CD-MQL), ultrasonic-assisted drilling with flood cooling (UAD-Wet) and with MQL (UAD-MQL). The drill bit wear, drilling forces, chip morphology and drilled hole quality are used as the performance measures. The results show that UAD conditions result in lower feed forces than CD conditions, with a 31.2% reduction in wet and a 15.3% reduction in MQL on average. The lowest feed forces are observed in UAD-Wet conditions due to better coolant penetration in the cutting zone. The UAD-Wet yielded the lowest tool wear, while CD-MQL exhibited the most severe. UAD demonstrated a & SIM;50% lower tool wear in the wet condition than CD and a 38.7% in the MQL condition. UAD is shown to outperform the CD process in terms of drilled-hole accuracy.
Description
Sadigh, Bahram Lotfi/0000-0002-3027-3734; Namlu, Ramazan Hakkı/0000-0002-7375-8934; Yilmaz, Okan Deniz/0000-0002-5431-4334
Keywords
Minimum quantity lubrication, NiTi, shape memory alloy, ultrasonic-assisted drilling
Turkish CoHE Thesis Center URL
Fields of Science
Citation
1
WoS Q
Q2
Scopus Q
Q2
Source
Volume
27
Issue
4
Start Page
325
End Page
349