Machining performance and sustainability analysis of Al<sub>2</sub>O<sub>3</sub>-CuO hybrid nanofluid MQL application for milling of Ti-6Al-4V

Loading...
Thumbnail Image

Date

2024

Journal Title

Journal ISSN

Volume Title

Publisher

Taylor & Francis inc

Open Access Color

OpenAIRE Downloads

OpenAIRE Views

Research Projects

Organizational Units

Organizational Unit
Mechanical Engineering
(2009)
The Atılım University Department of Mechanical Engineering started education in 2009, and offers graduate and doctorate degree programs, in addition to its undergraduate program. Our main goal is to graduate Mechanical Engineers who have the skills to design, analyze and synthesize; who are able to convert advanced technology and innovations into products; and who have the culture of research and cooperation. While our graduates reach this goal, they adopt the principle of life-long learning, and develop a sense of entrepreneurship, paying importance to professional ethics. With a curriculum prepared in line with the criteria of MÜDEK, we help our students develop themselves professionally, and socially. Graduates of mechanical engineering may be employed in many sectors and in a wide array of positions. Able to work under any field that involves production and energy conversion, graduates of the department may also gain expertise in fields such as aviation, automotive, or material engineering.
Organizational Unit
Department of Mechanical Engineering
(2016)
The Mechanical Engineering Doctoral Program has started in 2016-2017 academic year. We have highly qualified teaching and research faculty members and strong research infrastructure in the department for graduate work. Research areas include computational and experimental research in fluid and solid mechanics, heat and mass transfer, advanced manufacturing, composites and other advanced materials. Our fundamental mission is to train engineers who are able to work with advanced technology, create innovative approaches and authentic designs, apply research methods effectively, conduct research and develop high quality methods and products in space, aviation, defense, medical and automotive industries, with a contemporary education and research infrastructure.
Organizational Unit
Manufacturing Engineering
(2003)
Opened in 2003 with the aim to graduate experts in the field of machine-production, our Department is among the firsts in our country to offer education in English. The Manufacturing Engineering program focuses on the manufacturing technologies that shape materials from raw materials to final products by means of analytical, experimental and numerical modeling methods. First Manufacturing Engineering Program to be engineered by Müdek, our department aims to graduate creative and innovative Manufacturing Engineers that are knowledgeable in the current technology, and are able to use production resources in an effective and sustainable way that never disregards environmental facts. As the first Department to implement the Cooperative Education Program at Atılım University in coordination with institutions from the industry, the Manufacturing Engineering offers a practice-oriented approach in education with its laboratory infrastructure and research opportunities. The curriculum at our department is supported by current engineering software, and catered to creating engineers equipped to meet the needs of the production industry.

Journal Issue

Abstract

Machining of Ti-6Al-4V presents challenges due to its low thermal conductivity, and conventional cutting fluids (CCF) are inadequate in providing a productive and sustainable solution. This study aims to achieve more sustainable and productive machining of Ti-6Al-4V by utilizing Al2O3 and CuO-added Nanofluid Minimum Quantity Lubrication (NMQL) individually and in hybrid form with different concentrations. A comparison is made with pure-MQL, CCF and dry conditions. The study consists of three stages. In the first stage, the physical properties of the coolants, like contact angle and surface tension, are investigated. The second stage involves slot milling operations, and various outputs including cutting forces, surface roughness, surface topography, surface finish, and subsurface microhardness are analyzed. In the last stage, a sustainability analysis is conducted based on the Pugh Matrix Approach. The results indicate that Al2O3-NMQL exhibits lower contact angles and surface tensions compared to other conditions. Furthermore, HNMQL applications result in lower cutting forces (up to 46.5%), surface roughness (up to 61.2%), and microhardness (up to 6.6%), while yielding better surface finish and topography compared to CCF. The sustainability analysis demonstrates that HNMQL application is the most suitable option for achieving sustainable machining of Ti-6Al-4V.

Description

Namlu, Ramazan Hakkı/0000-0002-7375-8934; Lotfi, Bahram/0000-0002-3027-3734; KILIC, Sadik Engin/0000-0002-8928-7487

Keywords

Ti-6Al-4V, nanofluid minimum quantity lubrication, cutting force, surface quality, microhardness, sustainability assessment

Turkish CoHE Thesis Center URL

Fields of Science

Citation

2

WoS Q

Q2

Scopus Q

Q2

Source

Volume

28

Issue

1

Start Page

29

End Page

73

Collections