Search Results

Now showing 1 - 10 of 11
  • Article
    Citation - WoS: 5
    Heterogeneity in Classes: Cooperative Problem-Solving Activities Through Cooperative Learning
    (Fac Teacher Education, 2014) Cigdemoglu, Ceyhan; Kapusuz, Kamil Yavuz; Kara, Ali
    Teachers, from primary schools to college, experience challenges regarding both increased class sizes and a greater diversity of students having a broad spectrum of abilities, interests, needs, and goals. The aim of this paper is to investigate the effect of cooperative learning through Cooperative Problem-Solving (CPS) activities on homogenous and heterogeneous grouping in an engineering course. As a mixed method design, the study utilized both quantitative and qualitative data. The participants, 47 engineering students selected conveniently, were enrolled in a communication systems course. The analysis of the quantitative data indicated that no significant difference (p=.791) exists between the ways in which the students in homogenous and the students in heterogeneous group understand communication systems. In order to reveal the perceptions of students regarding the implementation, they were interviewed at the end of the semester. The qualitative data obtained from these interviews suggests that students prefer heterogeneous to homogenous grouping. The findings also imply that further research should concentrate on heterogeneous grouping strategies and more detailed qualitative data in order to reveal what kind of patterns emerge from students' interactions in different groupings.
  • Article
    Citation - WoS: 9
    Multipath Exploitation in Emitter Localization for Irregular Terrains
    (Spolecnost Pro Radioelektronicke inzenyrstvi, 2019) Dalveren, Yaser; Kara, Ali
    Electronic Support Measures (ESM) systems have many operational challenges while locating radar emitter's position around irregular terrains such as islands due to multipath scattering. To overcome these challenges, this paper addresses exploiting multipath scattering in passive localization of radar emitters around irregular terrains. The idea is based on the use of multipath scattered signals as virtual sensor through Geographical Information System (GIS). In this way, it is presented that single receiver (ESM receiver) passive localization can be achieved for radar emitters. The study is initiated with estimating candidate multipath scattering centers over irregular terrain. To do this, ESM receivers' Angle of Arrival (AOA) and Time of Arrival (TOA) information are required for directly received radar pulses along with multipath scattered pulses. The problem then turns out to be multiple-sensor localization problem for which Time Difference of Arrival (TDOA)-based techniques can easily be applied. However, there is high degree of uncertainty in location of candidate multipath scattering centers as the multipath scattering involves diffuse components over irregular terrain. Apparently, this causes large localization errors in TDOA. To reduce this error, a reliability based weighting method is proposed. Simulation results regarding with a simplified 3D model are also presented.
  • Article
    Citation - WoS: 19
    Citation - Scopus: 20
    Human Body Shadowing Variability in Short-Range Indoor Radio Links at 3-11 Ghz Band
    (Taylor & Francis Ltd, 2009) Kara, Ali
    Measurement results for human body shadowing and local environmental effects in short-range indoor radio channels are presented. A narrowband measurement system, comprising a signal generator, two identical triangular monopoles and a spectrum analyser, was used in the measurements. When the radio link was periodically blocked by a human body with various objects in and around the link, fading depths of up to 15dB and even more were observed at spot frequencies of 3-11GHz band. Standard deviation and its range for human body blockage are estimated for different radio link scenarios simulating real environments. The distribution of human body shadowing was analysed and compared with known distribution functions.
  • Article
    Citation - WoS: 6
    Citation - Scopus: 9
    Comparative Assessment of Electromagnetic Simulation Tools for Use in Microstrip Antenna Design: Experimental Demonstrations
    (Wiley, 2019) Bilgin, Gulsima; Yilmaz, Vadi Su; Kara, Ali; Aydin, Elif
    This paper presents a better understanding of the use of finite integration techniques (FIT) and finite element method (FEM) in different types of microstrip antennas in order to determine which numerical method gives relatively more accurate results. Although the theoretical formulation based on Maxwell's equations of both FEM and FIT are approached from different aspects in the literature, there is still a lack of comparison of the same antenna type using different numerical methods employing FEM and FIT. Therefore, in this study, FEM and FIT were applied to two different types of microstrip antennas, and their simulation and experimental results was compared. For the first antenna demonstration, a multilayer structure was chosen to achieve one of the significant parameters. Then, a microstrip antenna with a compact structure was used in the second demonstration. Using these two antennas, the accuracy of FEM and FIT in different structures were compared and all simulated return loss and gain results were verified by the measured results. The experimental demonstrations show that FEM performs better for both types of microstrip antennas while FIT provides an adequate result for two-layer microstrip antennas.
  • Article
    A Case Study on the Assessment of Rf Switch and Splitter Options for Coupling of Transceiver Modules To Bidirectional Antennas Employed in Linear Wireless Sensor Networks
    (Wiley, 2021) Dalveren, Yaser; Durukan, Ahmet Mert; Kara, Ali
    Recently, a concept of linear wireless sensor networks (LWSNs) has attracted much attention. For such networks, one of the key challenges in sensor node design is to couple transceiver modules with bidirectional antennas placed back-to-back for opposite radiation. As is known, simply, this can be achieved by using well-known coupling options like radio frequency (RF) switch or splitter. However, it is important to decide between two seemingly equally good options according to the system requirements such as RF performance, power consumption, and cost. Therefore, this study aims to comparatively assess these options from the system level point of view to find out what advantages or disadvantages either provides as per the other from widespread use of them in a LWSN-based cathodic protection monitoring of oil and natural gas pipelines in extreme environments. Preliminary field tests are also conducted to validate the efficiency of coupling options for LWSN links. Results show that RF splitter offers low power consumption and cost whereas RF switch has advantages of low loss. Thus, it is believed that this study may provide useful insights to design bidirectional sensor links for LWSNs.
  • Article
    Citation - WoS: 11
    Citation - Scopus: 15
    A Study on the Performance Evaluation of Wavelet Decomposition in Transient-Based Radio Frequency Fingerprinting of Bluetooth Devices
    (Wiley, 2022) Almashaqbeh, Hemam; Dalveren, Yaser; Kara, Ali
    Radio frequency fingerprinting (RFF) is used as a physical-layer security method to provide security in wireless networks. Basically, it exploits the distinctive features (fingerprints) extracted from the physical waveforms emitted from radio devices in the network. One of the major challenges in RFF is to create robust features forming the fingerprints of radio devices. Here, dual-tree complex wavelet transform (DT-CWT) provides an accurate way of extracting those robust features. However, its performance on the RFF of Bluetooth transients which fall into narrowband signaling has not been reported yet. Therefore, this study examines the performance of DT-CWT features on the use of transient-based RFF of Bluetooth devices. Initially, experimentally collected Bluetooth transients from different smartphones are decomposed by DT-CWT. Then, the characteristics and statistics of the wavelet domain signal are exploited to create robust features. Next, the support vector machine (SVM) is used to classify the smartphones. The classification accuracy is demonstrated by varying channel signal-to-noise ratio (SNR) and the size of transient duration. Results show that reasonable accuracy can be achieved (lower bound of 88%) even with short transient duration (1024 samples) at low SNRs (0-5 dB).
  • Article
    Citation - WoS: 3
    Citation - Scopus: 3
    Modeling and Measurement of Human Body Blockage Loss at 28 Ghz
    (Taylor & Francis Ltd, 2023) Benzaghta, Mohamed; Gokdogan, Bengisu Yalcinkaya; Coruk, Remziye Busra; Kara, Ali
    Millimeter-wave (mm-Wave) spectrum is an essential enabler to the fifth generation (5G) wireless technology. Humans are one of the most noticeable blockers that cause temporal variation in indoor radio channels. This paper presents human blockage measurements at 28 GHz, with several humans of different sizes. The effect of the crossing orientations of the human bodies is investigated for three different transmitter heights. A human blockage model based on the Fresnel diffraction scheme is shown to be applicable in estimating the human blockage loss in indoor radio links considering various body sizes, different crossing orientations, and different transmitter heights. The findings reported in this paper could help improve indoor radio channel models at 28 GHz bands for 5G technologies considering the presence of human body blockages.
  • Article
    Citation - WoS: 5
    Citation - Scopus: 6
    Miniaturised Antenna at a Sub-Ghz Band for Industrial Remote Controllers
    (inst Engineering Technology-iet, 2019) Yilmaz, Vadi Su; Bilgin, Gulsima; Aydin, Elif; Kara, Ali
    This study presents the design and the fabrication of a miniaturised sub-GHz antenna for remote control applications. Miniaturisation techniques were examined to identify the most appropriate topology for sub-GHz band requirements. First, the design parameters of the antenna were determined, and then, a commercial electromagnetic simulation tool was used for the design and optimisation phases. Then, measurements of the fabricated antenna were undertaken. Parametric studies with several iterations were performed to achieve the best possible results. Second, the effects of the box in which the antenna could be placed were examined as most of such antennas are enclosed by plastic boxes. For this purpose, material properties of a typical industrial box available in the market were studied initially, and the most appropriate material of the box was used in simulations. Finally, a polyamide box with appropriate size was fabricated, and the designed antenna was placed inside the box and the measurements were conducted. The measurement results show that the designed antenna provides resonance at the targeted license-free band with adequate size for industrial remote controllers.
  • Article
    Citation - WoS: 6
    Citation - Scopus: 6
    Opportunities and Challenges Inrcsmeasurement of 9-Mm Bullet Model With77 Ghzmmwavecotsradar Systems
    (Wiley, 2020) Ahmed, Badar-ud-din; Kara, Ali; Zencir, Ertan; Benzaghta, Mohamed
    This article indicates a thus far unexplored area of applied research and development to the application and system engineers and researchers from broad engineering backgrounds. Results of a study are presented for measurement of calibrated Radar Cross Section (RCS) of a 9-mm bullet (projectile) model by using a commercial-of-the-shelf (COTS) millimeter wave Frequency Modulated Continuous Wave (FMCW) radar system operating in 77 to 81 GHz frequency range. The calibrated RCS variation against the aspect angle is measured experimentally, analyzed, and compared with the simulation results which shows fair matching between the two. The opportunities and challenges attached with the use of such COTS systems for development of Hostile Fire Indication (HFI) systems are discussed. This bullet type and this mmwave frequency has not been thus far studied and reported in literature. This may motivate interested individuals/entities to try to measure (at acceptable accuracy before anechoic chamber measurements) RCS of similar low-size objects by using such low-cost COTS platforms.
  • Article
    Citation - WoS: 1
    Citation - Scopus: 1
    Blockage Loss and Shadow Fading Behavior of Millimeter-Wave Signals Due To Human Bodies at 28 Ghz
    (Wiley, 2024) Benzaghta, Mohamed; Gokdogan, Bengisu Yalcinkaya; Coruk, Remziye Busra; Kara, Ali
    As the millimeter-wave (mm-Wave) spectrum is considered to be an essential enabler to the fifth generation (5G) wireless communication systems. Human movements are one of the most significant factors that cause transient blockage in indoor mm-wave channels. In this letter, human blockage measurements and shadow fading statistics due to human body movements in an indoor office environment are reported for the 28 GHz band. The effect of human bodies on the channel is measured for several scenarios including a variety of population and using diverse antenna heights. The reported shadow fading statistics include both the duration and the depth of the blockage fade, and accordingly, we propose several empirical models that cater for such blockage events. The findings reported in this letter could improve the modeling of indoor radio channels at 28 GHz bands by considering the presence of humans, as well as their movements.