Search Results

Now showing 1 - 10 of 20
  • Article
    Citation - WoS: 4
    Citation - Scopus: 8
    Remote Rf Laboratory Requirements: Engineers' and Technicians' Perspective
    (Anadolu Univ, 2007) Cagiltay, Nergiz Ercil; Aydin, Elif Uray; Kara, Ali; Department of Electrical & Electronics Engineering; Software Engineering
    This study aims to find out requirements and needs to be fulfilled in developing remote Radio Frequency (RF) laboratory. Remote laboratories are newly emerging solutions for better supporting of e-learning platforms and for increasing their efficiency and effectiveness in technical education. By this way, modern universities aim to provide lifelong learning environments to extend their education for a wider area and support learners anytime and anywhere when they need help. However, as far as the authors concern, there is no study investigating the requirements and needs of remote laboratories in that particular field in the literature. This study is based on electrical engineers' and technicians' perspectives on the requirements of a remote laboratory in RF domain. Its scope covers investigation of the participants' perceptions toward computer mediated communication and it attempts to answer the questions: which studying strategies are preferred by the learners and what kind of RF laboratory content should be provided. The analysis of the results showed that, geographic independence, finding quickly the elements of past communication and temporal independence are declared as the most important advantages of computer-mediated communication. However, reading significant amount of information is a problem of these environments. In the context of how to show the content, respondents want to see shorter text on the screen. Therefore the instructions should include little amount of text and must be supported with figures and interactive elements. The instructional materials developed for such learner groups should support both linear and non-linear instructions. While analyzing the content to be provided, we have seen that, most of the participants do not have access to high level equipments and traditional experiments are considered as the necessary ones for both engineers and technicians.
  • Article
    Citation - WoS: 31
    Citation - Scopus: 40
    Variational Mode Decomposition-Based Radio Frequency Fingerprinting of Bluetooth Devices
    (Ieee-inst Electrical Electronics Engineers inc, 2019) Aghnaiya, Alghannai; Ali, Aysha M.; Kara, Ali
    Radio frequency fingerprinting (RFF) is based on identification of unique features of RF transient signals emitted by radio devices. RF transient signals of radio devices are short in duration, non-stationary and nonlinear time series. This paper evaluates the performance of RF fingerprinting method based on variational mode decomposition (VMD). For this purpose, VMD is used to decompose Bluetooth (BT) transient signals into a series of band-limited modes, and then, the transient signal is reconstructed from the modes. Higher order statistical (HOS) features are extracted from the complex form of reconstructed transients. Then, Linear Support Vector Machine (LVM) classifier is used to identify BT devices. The method has been tested experimentally with BT devices of different brands, models and series. The classification performance shows that VMD based RF fingerprinting method achieves better performance (at least 8% higher) than time-frequency-energy (TFED) distribution based methods such as Hilbert-Huang Transform. This is demonstrated with the same dataset but with smaller number of features (nine features) and slightly lower (2-3 dB) SNR levels.
  • Article
    Citation - WoS: 14
    Citation - Scopus: 26
    Deep Learning-Based Vehicle Classification for Low Quality Images
    (Mdpi, 2022) Tas, Sumeyra; Sari, Ozgen; Dalveren, Yaser; Pazar, Senol; Kara, Ali; Derawi, Mohammad
    This study proposes a simple convolutional neural network (CNN)-based model for vehicle classification in low resolution surveillance images collected by a standard security camera installed distant from a traffic scene. In order to evaluate its effectiveness, the proposed model is tested on a new dataset containing tiny (100 x 100 pixels) and low resolution (96 dpi) vehicle images. The proposed model is then compared with well-known VGG16-based CNN models in terms of accuracy and complexity. Results indicate that although the well-known models provide higher accuracy, the proposed method offers an acceptable accuracy (92.9%) as well as a simple and lightweight solution for vehicle classification in low quality images. Thus, it is believed that this study might provide useful perception and understanding for further research on the use of standard low-cost cameras to enhance the ability of the intelligent systems such as intelligent transportation system applications.
  • Article
    Citation - WoS: 14
    Citation - Scopus: 16
    Reliability of Linear Wsns: a Complementary Overview and Analysis of Impact of Cascaded Failures on Network Lifetime
    (Elsevier, 2022) Carsancakli, Muhammed Fatih; Imran, Md Abdullah Al; Yildiz, Huseyin Ugur; Kara, Ali; Tavli, Bulent
    Linear Wireless Sensor Networks (LWSNs) are used in applications where deployment scenarios necessitate sensor nodes to be placed over a line topology. However, such a deployment raises reliability concerns because almost all the nodes in the network are critical with respect to the survivability of the LWSN. It is possible that an LWSN can stay connected even if a subset of the nodes are eliminated, yet, the potential reduction in Network Lifetime (NL) due to such an occurrence can be significant. In this study, after presenting a concise survey of the literature on LWSN reliability, we present an elaborate optimization framework to model the operation of an LWSN, which is built upon a comprehensive system model. Our framework encompasses three transmission power and packet size assignment strategies, which are instrumental in characterizing LWSN behavior. Furthermore, we utilized two-node failure models (i.e., random and coordinated) to assess the vulnerability of LWSNs from multiple perspectives. The results of this study reveal that the impact of coordinated node failures on NL is more severe than the impact of random node failures to such extent that in strongly connected LWSNs, the percentage decrease in NL due to coordinated node failures can be more than a magnitude higher than the NL decrease due to random node failures.
  • Article
    Citation - WoS: 2
    Citation - Scopus: 3
    Modelling and Design of Pre-Equalizers for a Fully Operational Visible Light Communication System
    (Mdpi, 2023) Bostanoglu, Murat; Dalveren, Yaser; Catak, Ferhat Ozgur; Kara, Ali
    Nowadays, Visible Light Communication (VLC) has gained much attention due to the significant advancements in Light Emitting Diode (LED) technology. However, the bandwidth of LEDs is one of the important concerns that limits the transmission rates in a VLC system. In order to eliminate this limitation, various types of equalization methods are employed. Among these, using digital pre-equalizers can be a good choice because of their simple and reusable structure. Therefore, several digital pre-equalizer methods have been proposed for VLC systems in the literature. Yet, there is no study in the literature that examines the implementation of digital pre-equalizers in a realistic VLC system based on the IEEE 802.15.13 standard. Hence, the purpose of this study is to propose digital pre-equalizers for VLC systems based on the IEEE 802.15.13 standard. For this purpose, firstly, a realistic channel model is built by collecting the signal recordings from a real 802.15.13-compliant VLC system. Then, the channel model is integrated into a VLC system modeled in MATLAB. This is followed by the design of two different digital pre-equalizers. Next, simulations are conducted to evaluate their feasibility in terms of the system's BER performance under bandwidth-efficient modulation schemes, such as 64-QAM and 256-QAM. Results show that, although the second pre-equalizer provides lower BERs, its design and implementation might be costly. Nevertheless, the first design can be selected as a low-cost alternative to be used in the VLC system.
  • Article
    Citation - WoS: 17
    Citation - Scopus: 22
    Seven Principles of Instructional Content Design for a Remote Laboratory: a Case Study on Errl
    (Ieee-inst Electrical Electronics Engineers inc, 2011) Cagiltay, Nergiz Ercil; Aydin, Elif; Aydin, Cansu Cigdem; Kara, Ali; Alexandru, Marian
    This paper discusses the results of a study of the requirements for developing a remote radio frequency (RF) laboratory for electrical engineering students. It investigates students' preferred usage of the technical content of a state-of-the-art RF laboratory. The results of this study are compared to previous findings, which dealt with other user groups (technicians in technical colleges and engineers in the RF domain). Based on the results of these analyses, seven essential principles for designing and developing such a laboratory were identified. As a case study, these principles were then implemented into a remote laboratory system. In this paper, the implementation examples are also provided and discussed. The primary aim of this study is to guide remote laboratory platform developers toward the most effective instructional design. This study also determined, from the remote laboratory system case study, what the requirements are of such a laboratory from the students' perspective.
  • Article
    Citation - WoS: 19
    Citation - Scopus: 23
    Effect of People Moving Near Short-Range Indoor Propagation Links at 2.45 Ghz
    (Korean inst Communications Sciences (k I C S), 2006) Kara, Ali; Bertoni, Henry L.
    Measurement results are presented for the effects of people moving near and across short-range indoor propagation links at 2.45 GHz (ISM band). Excess loss due to scattering and blockage by human bodies in the vicinity of one terminal were measured for different radio links in an office environment. Statistics on fades due to human body motion are given. Polarization coupling (depolarization) for various radio links was measured, and correlation of polarization components is discussed as a basis for using polarization diversity reception in short-range indoor systems.
  • Article
    Citation - WoS: 29
    Citation - Scopus: 33
    On the Performance of Variational Mode Decomposition-Based Radio Frequency Fingerprinting of Bluetooth Devices
    (Mdpi, 2020) Aghnaiya, Alghannai; Dalveren, Yaser; Kara, Ali
    Radio frequency fingerprinting (RFF) is one of the communication network's security techniques based on the identification of the unique features of RF transient signals. However, extracting these features could be burdensome, due to the nonstationary nature of transient signals. This may then adversely affect the accuracy of the identification of devices. Recently, it has been shown that the use of variational mode decomposition (VMD) in extracting features from Bluetooth (BT) transient signals offers an efficient way to improve the classification accuracy. To do this, VMD has been used to decompose transient signals into a series of band-limited modes, and higher order statistical (HOS) features are extracted from reconstructed transient signals. In this study, the performance bounds of VMD in RFF implementation are scrutinized. Firstly, HOS features are extracted from the band-limited modes, and then from the reconstructed transient signals directly. Performance comparison due to both HOS feature sets is presented. Moreover, the lower SNR bound within which the VMD can achieve acceptable accuracy in the classification of BT devices is determined. The approach has been tested experimentally with BT devices by employing a Linear Support Vector Machine (LSVM) classifier. According to the classification results, a higher classification performance is achieved (similar to 4% higher) at lower SNR levels (-5-5 dB) when HOS features are extracted from band-limited modes in the implementation of VMD in RFF of BT devices.
  • Article
    Citation - WoS: 11
    Citation - Scopus: 14
    Performance Assessment of Transient Signal Detection Methods and Superiority of Energy Criterion (ec) Method
    (Ieee-inst Electrical Electronics Engineers inc, 2020) Mohamed, Ismail S.; Dalveren, Yaser; Kara, Ali
    Radio frequency fingerprinting (RFF) based on RF transients is one of the most effective techniques for improving wireless security. For an efficient RFF development, RF transients need to be accurately detected. However, the detection of the transient starting point remains a main challenge due to the channel noise. In the literature, several methods have been presented to detect the starting point of the transient signals. As an alternative to these methods, this study proposes a method that utilizes Energy Criterion (EC) technique for the first time. In order to test its performance, firstly, an extensive dataset consisting of Wi-Fi signals recorded under realistic Signal-to-Noise Ratio (SNR) conditions is created. Using the provided dataset, the proposed method as well as common transient detection methods are employed for transient start detection. Then, the effect of SNR on the performance of transient start detection is evaluated. Moreover, a performance comparison between the methods is provided based on their respective computational speed and complexity. The results prove the feasibility and efficiency of the proposed method to detect the transient starting point for RFF of Wi-Fi device identification. As to the knowledge of the authors, this study is the first report that comparatively assesses the transient detection methods by using extensive data under realistic noise conditions.
  • Article
    Citation - WoS: 5
    Citation - Scopus: 6
    On the Design and Effectiveness of Simulink-Based Educational Material for a Communication Systems Course
    (Wiley, 2020) Coruk, R. Busra; Yalcinkaya, Bengisu; Kara, Ali
    The methods used in engineering education have gained diversity in parallel with rapidly evolving technology. New technological methods along with the traditional methods have been adopted for undergraduate education. Today, Simulink-based educational materials are used in many fields in engineering education. However, in the literature, the contribution of such educational materials to the learning process has not been measured thoroughly. This study presents a comprehensive measurement method to improve the created course material and show the effectiveness of developed course material in students' success. First, educational material was developed for an undergraduate electrical engineering course: communication systems. A feedback group made up of diverse student learners was employed extensively in the material development phase. Next, the impact of the developed material on the success of the students was examined using both qualitative and quantitative measurement tools including questionnaires, one-to-one interviews, and class and university level anonymous surveys. This also included students' performance regarding laboratory quizzes and achievement of course learning outcomes. Overall, the measurement results show that the course material increased students' success in the course. Moreover, students' general perception of the course material was positive.