3 results
Search Results
Now showing 1 - 3 of 3
Article Citation - WoS: 2Citation - Scopus: 2An Investigation of Recycled Rubber Composites Reinforced With Micro Glass Bubbles: an Experimental and Numerical Approach(Taylor & Francis Ltd, 2024) Kabakci, Gamze Cakir; Bayraktar, Emin; Aslan, OzgurRecycled rubber is widely used for its lightweight and cost-effective properties but often has limited mechanical strength, restricting its applications. This study enhances the mechanical performance of devulcanised recycled rubber by reinforcing it with micro glass bubbles (GBs) featuring a density of 0.65 g/cm(3) and an elastic modulus of 3.5 GPa, offering a high strength-to-density ratio. Uniaxial compression tests were conducted on samples with GB volume fractions of 5%, 10%, and 15%. Results were validated through finite element analysis (FEA) in ABAQUS/Standard, incorporating randomised GB distributions. A 2D representative volume element (RVE) with randomly distributed GBs was modelled, applying periodic boundary conditions to simplify the composite into an equivalent homogeneous material. Numerical simulations assessed the effects of GB diameters (30, 40, and 50 mu m) and inclusion size ranges (20-50 mu m and 10-60 mu m), finding minimal impact on results. The RVE, sized at 238 mu m, accurately represented macroscale composite behaviour. Stress-strain behaviour was analysed using average stress and strain tensors. The strong agreement between experimental and numerical results validates the proposed method, demonstrating its accuracy in predicting the mechanical behaviour of the reinforced composite material.Article A Coupled Modelling and Simulation Approach to Electromagnetic Sheet Metal Forming(Taylor & Francis Ltd, 2025) Aslan, Ozgur; Kabakci, Gamze Cakir; Sait, Ferit; Camalan, Caner; Baranoglu, Besim; Bayraktar, EminThis study presents a coupled numerical and experimental investigation of electromagnetic forming (EMF) for aluminium sheets. A custom simulation framework is developed in ABAQUS/Standard using user-defined material (UMAT) and load (DLOAD) subroutines. The magnetic pressure exerted on the workpiece is computed through a finite difference-based solution of Maxwell's equations and applied to the mechanical solver. The mechanical response of the material is modelled using a strain-rate-sensitive plasticity law calibrated for aluminium 7075-O. Experimental forming trials are performed using a custom-built EMF setup, and the results are compared with numerical predictions to validate the model. The comparison shows strong agreement in deformation profiles, confirming the predictive capability of the proposed simulation strategy. This work offers a reliable computational tool for optimising EMF processes and provides insights into material behaviour under high strain rate electromagnetic loading.Review Citation - WoS: 10Citation - Scopus: 16A Review on Analysis of Reinforced Recycled Rubber Composites(Mdpi, 2022) Kabakci, Gamze Cakir; Aslan, Ozgur; Bayraktar, EminRubber recycling attracts considerable attention by a variety of industries around the world due to shrinking resources, increasing cost of raw materials, growing awareness of sustainable development, and environmental issues. Recycled rubber is commonly used in aeronautic, automotive, and transportation industries. In this study, recycled rubber composites designed with different reinforcements in the literature are scrutinized by means of toughening mechanisms, mechanical and physical properties, as well as microstructural and fracture surface analysis. Microscale reinforcements (glass bubbles, alumina fiber, etc.) and nanoscale reinforcements (nanosilica, graphene nanoplatelets, etc.) utilized as reinforcements in rubber composites are thoroughly reviewed. The general mechanical properties reported by previous studies, such as tensile, compressive, and flexural strength, are investigated with the main goal of optimizing the amount of reinforcement used. The majority of the studies on recycled rubber composites show that recycled rubber reinforced with microscale particles leads to the development of physical and mechanical properties of the structures and also provides low-cost and lightweight composites for several application areas. Moreover, recycled rubber containing composites can be suitable for applications where high toughness and high resistance to impact are desirable. The present review aims to demonstrate research on reinforced recycled rubber composites in the literature and prospective outcomes.

