A Coupled Modelling and Simulation Approach to Electromagnetic Sheet Metal Forming

No Thumbnail Available

Date

2025

Journal Title

Journal ISSN

Volume Title

Publisher

Taylor & Francis Ltd

Open Access Color

Green Open Access

Yes

OpenAIRE Downloads

OpenAIRE Views

Publicly Funded

No
Impulse
Average
Influence
Average
Popularity
Average

Research Projects

Journal Issue

Abstract

This study presents a coupled numerical and experimental investigation of electromagnetic forming (EMF) for aluminium sheets. A custom simulation framework is developed in ABAQUS/Standard using user-defined material (UMAT) and load (DLOAD) subroutines. The magnetic pressure exerted on the workpiece is computed through a finite difference-based solution of Maxwell's equations and applied to the mechanical solver. The mechanical response of the material is modelled using a strain-rate-sensitive plasticity law calibrated for aluminium 7075-O. Experimental forming trials are performed using a custom-built EMF setup, and the results are compared with numerical predictions to validate the model. The comparison shows strong agreement in deformation profiles, confirming the predictive capability of the proposed simulation strategy. This work offers a reliable computational tool for optimising EMF processes and provides insights into material behaviour under high strain rate electromagnetic loading.

Description

Keywords

Electromagnetic Forming, Lorentz Force, Plasticity, Coupled Field Simulation, Finite Elements

Turkish CoHE Thesis Center URL

Fields of Science

Citation

WoS Q

Q3

Scopus Q

Q2
OpenCitations Logo
OpenCitations Citation Count
N/A

Source

Advances in Materials and Processing Technologies

Volume

Issue

Start Page

1

End Page

18

Collections

PlumX Metrics
Citations

Scopus : 0

Captures

Mendeley Readers : 1

Google Scholar Logo
Google Scholar™
OpenAlex Logo
OpenAlex FWCI
0.0

Sustainable Development Goals

1

NO POVERTY
NO POVERTY Logo

3

GOOD HEALTH AND WELL-BEING
GOOD HEALTH AND WELL-BEING Logo

4

QUALITY EDUCATION
QUALITY EDUCATION Logo

5

GENDER EQUALITY
GENDER EQUALITY Logo

7

AFFORDABLE AND CLEAN ENERGY
AFFORDABLE AND CLEAN ENERGY Logo

8

DECENT WORK AND ECONOMIC GROWTH
DECENT WORK AND ECONOMIC GROWTH Logo

9

INDUSTRY, INNOVATION AND INFRASTRUCTURE
INDUSTRY, INNOVATION AND INFRASTRUCTURE Logo

10

REDUCED INEQUALITIES
REDUCED INEQUALITIES Logo

12

RESPONSIBLE CONSUMPTION AND PRODUCTION
RESPONSIBLE CONSUMPTION AND PRODUCTION Logo

16

PEACE, JUSTICE AND STRONG INSTITUTIONS
PEACE, JUSTICE AND STRONG INSTITUTIONS Logo

17

PARTNERSHIPS FOR THE GOALS
PARTNERSHIPS FOR THE GOALS Logo