An Investigation of Recycled Rubber Composites Reinforced With Micro Glass Bubbles: an Experimental and Numerical Approach

Loading...
Thumbnail Image

Date

2024

Journal Title

Journal ISSN

Volume Title

Publisher

Taylor & Francis Ltd

Open Access Color

OpenAIRE Downloads

OpenAIRE Views

Research Projects

Organizational Units

Organizational Unit
Mechanical Engineering
(2009)
The Atılım University Department of Mechanical Engineering started education in 2009, and offers graduate and doctorate degree programs, in addition to its undergraduate program. Our main goal is to graduate Mechanical Engineers who have the skills to design, analyze and synthesize; who are able to convert advanced technology and innovations into products; and who have the culture of research and cooperation. While our graduates reach this goal, they adopt the principle of life-long learning, and develop a sense of entrepreneurship, paying importance to professional ethics. With a curriculum prepared in line with the criteria of MÜDEK, we help our students develop themselves professionally, and socially. Graduates of mechanical engineering may be employed in many sectors and in a wide array of positions. Able to work under any field that involves production and energy conversion, graduates of the department may also gain expertise in fields such as aviation, automotive, or material engineering.

Journal Issue

Abstract

Recycled rubber is widely used for its lightweight and cost-effective properties but often has limited mechanical strength, restricting its applications. This study enhances the mechanical performance of devulcanised recycled rubber by reinforcing it with micro glass bubbles (GBs) featuring a density of 0.65 g/cm(3) and an elastic modulus of 3.5 GPa, offering a high strength-to-density ratio. Uniaxial compression tests were conducted on samples with GB volume fractions of 5%, 10%, and 15%. Results were validated through finite element analysis (FEA) in ABAQUS/Standard, incorporating randomised GB distributions. A 2D representative volume element (RVE) with randomly distributed GBs was modelled, applying periodic boundary conditions to simplify the composite into an equivalent homogeneous material. Numerical simulations assessed the effects of GB diameters (30, 40, and 50 mu m) and inclusion size ranges (20-50 mu m and 10-60 mu m), finding minimal impact on results. The RVE, sized at 238 mu m, accurately represented macroscale composite behaviour. Stress-strain behaviour was analysed using average stress and strain tensors. The strong agreement between experimental and numerical results validates the proposed method, demonstrating its accuracy in predicting the mechanical behaviour of the reinforced composite material.

Description

Keywords

Recycled Rubber Composite, Glass Bubble, Homogenisation, Representative Volume Element, Periodic Boundary Condition

Turkish CoHE Thesis Center URL

Fields of Science

Citation

WoS Q

Scopus Q

Q3

Source

Volume

Issue

Start Page

End Page

Collections

Google Scholar Logo
Google Scholar™

Sustainable Development Goals

SDG data is not available