Search Results

Now showing 1 - 10 of 45
  • Article
    Citation - WoS: 23
    Citation - Scopus: 25
    Investigation of Optical Properties of Bi12geo20< Sillenite Crystals by Spectroscopic Ellipsometry and Raman Spectroscopy
    (Elsevier Sci Ltd, 2020) Isik, M.; Delice, S.; Gasanly, N. M.; Darvishov, N. H.; Bagiev, V. E.
    Bi12GeO20 (BGO) compound is one of the fascinating members of sillenites group due to its outstanding photorefractive and photocatalytic characteristics. The present paper aims at investigating optical properties of BGO crystals by means of spectroscopic ellipsometry and Raman spectroscopy measurements. Bi12GeO20 single crystals grown by Czochralski method were structurally characterized by X-ray diffraction (XRD) experiments and the analyses showed that studied crystals have cubic crystalline structure. Raman spectrum exhibited 15 peaks associated with A, E and F modes. Spectroscopic ellipsometry measurement data achieved in the energy region between 1.2 and 6.2 eV were used in the air/sample optical model to get knowledge about complex pseudodielectric constant, pseudorefractive index, pseudoextinction and absorption coefficients of the crystals. Spectral change of real and imaginary part of complex pseudodielectric constant were discussed in detail. Band gap energy of Bi12GeO20 single crystals was calculated to be 3.18 eV using absorption coefficient dependency on photon energy. Critical point energies at which photons are strongly absorbed were determined by utilizing the second energy derivative spectra of components of complex pseudodielectric function. Fitting of both spectra resulted in the presence of four interband transitions with energies of 3.49, 4.11, 4.67 and 5.51 eV.
  • Article
    Citation - WoS: 2
    Citation - Scopus: 2
    Optical Characterization of Nabi(moo4)2< Crystal by Spectroscopic Ellipsometry
    (Springer Heidelberg, 2024) Guler, I.; Isik, M.; Gasanly, N. M.
    The compound NaBi(MoO4)(2) has garnered significant interest in optoelectronic fields. This study employs spectroscopic ellipsometry to thoroughly examine the linear and nonlinear optical characteristics of NaBi(MoO4)(2) crystals, offering detailed insights into their optical behavior. Our investigation presents a precise method for discerning the crystal's spectral features, revealing the spectral variations of key optical parameters such as refractive index, extinction coefficient, dielectric function, and absorption coefficient within the 1.2-5.0 eV range. Through analysis, we determined optical attributes including bandgap energy, critical point energy, and single oscillator parameters. Additionally, we explored the nonlinear optical properties of NaBi(MoO4)(2), unveiling potential applications such as optoelectronic devices, frequency conversion, and optical sensors. This study enhances comprehension of optical properties of NaBi(MoO4)(2), underscoring its significance in future optical and electronic advancements.
  • Article
    Citation - WoS: 19
    Citation - Scopus: 20
    Optical characteristics of Bi12SiO20 single crystals by spectroscopic ellipsometry
    (Elsevier Sci Ltd, 2020) Isik, M.; Delice, S.; Nasser, H.; Gasanly, N. M.; Darvishov, N. H.; Bagiev, V. E.
    Structural and optical characteristics of Bi12SiO20 single crystal grown by the Czochralski method were investigated by virtue of X-ray diffraction (XRD) and spectroscopic ellipsometry measurements. XRD analysis indicated that the studied crystal possesses cubic structure with lattice parameters of a = 1.0107 nm. Spectral dependencies of several optical parameters like complex dielectric constant, refractive index, extinction and absorption coefficients were determined using ellipsometry experiments performed in the energy region of 1.2-6.2 eV. The energy band gap of Bi12SiO20 crystals was found to be 3.25 eV by utilizing absorption coefficient analysis. Moreover, critical point energies were calculated as 3.54, 4.02, 4.82 and 5.58 eV from analyses of the second energy derivative spectra of the complex dielectric constant.
  • Article
    Citation - WoS: 1
    Citation - Scopus: 1
    Temperature -Dependent Optical and Electrical Characterization of Cu-Ga Thin Films and Their Diode Characteristics on N-Si
    (Elsevier Gmbh, 2020) Gullu, H. H.; Isik, M.; Gasanly, N. M.; Parlak, M.
    In this paper, optical and electrical properties of thermally deposited Cu-Ga-S thin films were investigated using temperature-dependent optical transmission and electrical conductivity measurements. The analysis of the transmission spectra resulted in formation of three direct optical transitions due to the possible valence band splitting in the structure. The band gap values were calculated by means of absorption coefficient and incident photon energy was found in decreasing behavior as the temperature rises. The measured current-voltage values were used to extract the conductivity values which stand in the range of 1.73-2.62 (x104 O-1 cm-1) depending on the ambient temperature. These dark conductivity values were modeled by thermionic emission mechanism. The conductivity activation energies in the structures were calculated as 6.4, 14.5 and 40.7 meV according to the effects of grain boundary potentials. In addition, the films deposited on n-Si wafer showed a diode characteristic under the applied bias voltage between indium (In) front and silver (Ag) back contacts. From current-voltage measurements across the Si-based diode, about four orders of magnitude rectification was observed and the results were analyzed to determine the main diode parameters at dark and room temperature conditions.
  • Article
    Citation - Scopus: 1
    Infrared and Raman Scattering Spectra of Layered Structured Ga3inse4< Crystals
    (Elsevier Science Bv, 2013) Isik, M.; Gasanly, N. M.; Korkmaz, F.
    The infrared reflectivity and transmittance and Raman scattering in Ga3InSe4 layered crystals were investigated in the frequency ranges of 100-400, 400-4000 and 25-500 cm(-1). The refractive and absorption indices, the frequencies of transverse and longitudinal optical modes, high- and low-frequency dielectric constants were obtained from the analysis of the IR reflectivity spectra. The bands observed in IR transmittance spectra were interpreted in terms of two-phonon absorption processes. (C) 2012 Elsevier B.V. All rights reserved.
  • Article
    Citation - WoS: 3
    Citation - Scopus: 3
    Temperature and Excitation Intensity Tuned Photoluminescence in Ga0.75in0.25< Crystals
    (Elsevier Science Bv, 2013) Isik, M.; Guler, I.; Gasanly, N. M.
    Photoluminescence (PL) spectra of Ga0.75In0.25Se layered single crystals have been studied in the wavelength range of 580-670 nm and temperature range of 7-59 K. Two PL emission bands centered at 613 nm (2.02 eV, A-band) and 623 nm (1.99 eV, B-band) were revealed at T = 7K. The excitation laser intensity dependence of the emission bands have been studied in the 0.06-1.40 W cm(-2) range. Radiative transitions from shallow donor levels located at E-A = 0.11 and E-B = 0.15 eV below the bottom of conduction band to single shallow acceptor level located at 0.01 eV above the valence band are suggested to be responsible for the observed A- and B-bands. A simple model was proposed to interpret the recombination processes in Ga0.75In0.25Se single crystals. (c) 2012 Elsevier B.V. All rights reserved.
  • Article
    Citation - WoS: 4
    Citation - Scopus: 4
    Growth and Optical Characterization of Sn0.6sb0.4< Layer Single Crystals for Optoelectronic Applications
    (Elsevier Sci Ltd, 2022) Bektas, T.; Terlemezoglu, M.; Surucu, O.; Isik, M.; Parlak, M.
    SnSe compound is an attractive semiconductor material due to its usage in photovoltaic applications. The sub-stitution of Sb in the SnSe compound presents a remarkable advantage especially in point of tuning optical characteristics. The present paper reports the structural and optical properties of Sn1-xSbxSe (x = 0.4) layered single crystals grown by the vertical Bridgman method. To the best of our knowledge, this work is the first investigation of the Sn0.6Sb0.4Se crystal grown with the vertical Bridgman technique. X-ray diffraction (XRD) pattern of the grown crystal indicated the well crystalline structure of the grown crystals. Lattice strain and interplanar spacing of the crystal structure were determined using the XRD pattern. Scanning electron micro-scope images allowed to the observation of the layer crystal structure. The layer crystalline structure shows 2D material properties and provides 2D applications. Optical properties were revealed by carrying out Raman, ellipsometry and transmission measurements. Raman modes, refractive index, extinction coefficient, and dielectric spectra, band gap energy of the crystal were presented throughout the paper. The obtained results indicated that Sn1-xSbxSe (x = 0.4) layer single crystals may be an alternative potential for photovoltaic and optoelectronic applications.
  • Article
    Citation - WoS: 5
    Citation - Scopus: 5
    Structural and Optical Properties of Thermally Evaporated (gase)0.75-(gas)0.25 Thin Films
    (Elsevier Gmbh, 2021) Isik, M.; Işık, Mehmet; Emir, C.; Gasanly, N. M.; Işık, Mehmet; Department of Electrical & Electronics Engineering; Department of Electrical & Electronics Engineering
    GaSe and GaS binary semiconducting compounds are layered structured and have been an attractive research interest in two-dimensional material research area. The present paper aims at growing (GaSe)0.75 - (GaS)0.25 (or simply GaSe0.75S0.25) thin film and investigating its structural and optical properties. Thin films were prepared by thermal evaporation technique using evaporation source of its single crystal grown by Bridgman method. The structural properties were revealed using x-ray diffraction (XRD), energy dispersive spectroscopy (EDS), scanning electron microscopy (SEM) and atomic force microscopy (AFM) techniques. XRD pattern and EDS analyses indicated that thin films annealed at 300 ?C were successfully deposited and its structural characteristics are well-consistent with its single crystal form. Surface morphology was studied by means of SEM and AFM measurements. Optical properties were investigated by transmission and Raman spectroscopy techniques. Raman spectrum exhibited three peaks around 172, 242 and 342 cm-1. Analyses of transmission spectrum revealed the direct band gap energy as 2.34 eV. The mixed compounds of GaSe0.75S0.25 were prepared for the first time in a thin film form and the results of the present paper would provide valuable information to research area in which layered compounds have been studied in detail.
  • Article
    Citation - WoS: 1
    Citation - Scopus: 1
    Growth and Optical Properties of (na0.5bi0.5< (x=0.25) Single Crystal: a Potential Candidate for Optoelectronic Devices
    (Springer, 2024) Guler, I.; Isik, M.; Gasanly, N.
    Double tungstates (DT) and double molybdates (DM) have significant importance because of their optoelectronic applications. Regarding the importance of DT and DM, we investigated experimentally structural and optical properties of (Na0.5Bi0.5)(Mo1-xWx)O-4 (x = 0.25) crystal that belongs to the NaBi-DT and DM crystals group. Czochralski method was used to grow the single crystals. The structure of the crystal was identified using X-ray diffraction (XRD) measurements. Two sharp peaks associated with tetragonal crystal structure appeared in the pattern. Vibrational modes of the studied crystal were obtained from the Raman experiments. By the help of the Fourier transform infrared spectrophotometer (FTIR) measurements, infrared transmittance spectrum of the studied compound was recorded. Band gap energy wase found around 3.04 eV using two methods, Tauc and derivative analysis, based on transmission spectrum. Based on the analysis of absorption coefficient, Urbach energy was obtained as 0.22 eV. The revealed structural and optical properties of the crystal indicated that the material may be a candidate for optoelectronic devices in which NaBi(MoO4)(2) and NaBi(WO4)(2) materials are utilized.
  • Article
    Citation - WoS: 13
    Citation - Scopus: 14
    Linear and Nonlinear Optical Properties of Bi12geo20 Single Crystal for Optoelectronic Applications
    (Elsevier Sci Ltd, 2023) Isik, M.; Gasanly, N. M.
    The present paper aims at presenting linear and nonlinear optical properties of Bi12GeO20 single crystals grown by Czochralski method. Transmission and reflection measurements were performed in the 400-1000 nm region. The recorded spectra were analyzed considering well-known optical models. Spectral dependencies of absorption coefficient, skin depth, refractive index, real and imaginary components of dielectric function were presented. The analyses performed on absorption coefficient showed direct bandgap and Urbach energies as 2.56 and 0.22 eV, respectively. The first-and third-order nonlinear susceptibilities and nonlinear refractive index of the crystal were also reported in the present work. The results of the present paper would provide valuable information for optoelectronic device applications of Bi12GeO20.