Temperature -Dependent Optical and Electrical Characterization of Cu-Ga Thin Films and Their Diode Characteristics on N-Si

No Thumbnail Available

Date

2020

Journal Title

Journal ISSN

Volume Title

Publisher

Elsevier Gmbh

Open Access Color

OpenAIRE Downloads

OpenAIRE Views

Research Projects

Organizational Units

Organizational Unit
Department of Electrical & Electronics Engineering
Department of Electrical and Electronics Engineering (EE) offers solid graduate education and research program. Our Department is known for its student-centered and practice-oriented education. We are devoted to provide an exceptional educational experience to our students and prepare them for the highest personal and professional accomplishments. The advanced teaching and research laboratories are designed to educate the future workforce and meet the challenges of current technologies. The faculty's research activities are high voltage, electrical machinery, power systems, signal and image processing and photonics. Our students have exciting opportunities to participate in our department's research projects as well as in various activities sponsored by TUBİTAK, and other professional societies. European Remote Radio Laboratory project, which provides internet-access to our laboratories, has been accomplished under the leadership of our department with contributions from several European institutions.

Journal Issue

Events

Abstract

In this paper, optical and electrical properties of thermally deposited Cu-Ga-S thin films were investigated using temperature-dependent optical transmission and electrical conductivity measurements. The analysis of the transmission spectra resulted in formation of three direct optical transitions due to the possible valence band splitting in the structure. The band gap values were calculated by means of absorption coefficient and incident photon energy was found in decreasing behavior as the temperature rises. The measured current-voltage values were used to extract the conductivity values which stand in the range of 1.73-2.62 (x104 O-1 cm-1) depending on the ambient temperature. These dark conductivity values were modeled by thermionic emission mechanism. The conductivity activation energies in the structures were calculated as 6.4, 14.5 and 40.7 meV according to the effects of grain boundary potentials. In addition, the films deposited on n-Si wafer showed a diode characteristic under the applied bias voltage between indium (In) front and silver (Ag) back contacts. From current-voltage measurements across the Si-based diode, about four orders of magnitude rectification was observed and the results were analyzed to determine the main diode parameters at dark and room temperature conditions.

Description

parlak, mehmet/0000-0001-9542-5121; Gasanly, Nizami/0000-0002-3199-6686; Gasanly, Nizami/0000-0002-3199-6686; Isik, Mehmet/0000-0003-2119-8266

Keywords

Optical properties, Conductivity properties, I-III-VI type semiconductors

Turkish CoHE Thesis Center URL

Fields of Science

Citation

WoS Q

Q2

Scopus Q

Source

Volume

208

Issue

Start Page

End Page

Collections