Search Results

Now showing 1 - 2 of 2
  • Article
    Citation - WoS: 1
    Citation - Scopus: 1
    Material Characterization of Thermally Evaporated Znsn2te4< Thin Films
    (Elsevier Gmbh, Urban & Fischer verlag, 2019) Gullu, H. H.
    Polycrystalline and stoichiometric ZnSn2Te4 (ZST) thin films were deposited on glass substrates by sequential evaporation of elemental powder sources. The deposited films were annealed in nitrogen atmosphere at annealing temperature ranging 100-300 degrees C. Under post-annealing treatments, the composition, structural, surface morphological, optical and electrical characteristics of the films were investigated. Annealing treatments lead to maintain the structural characteristics with the possible change in atomic concentration of the constituent elements in limit of detection and crystallinity of the films increased with increasing annealing temperature. Grainy surface morphology was observed in as-grown and annealed films and densely packed appearance of the surface of the samples indicates uniform deposition of the film over the entire substrate surface. Under the aim of visible light harvesting in the applications of thin film photovoltaics, normal-incidence transmittance measurements were performed and the direct band gap values were found in the range of 1.8-2.1 eV. Temperature dependent conductivity characteristics of the films were investigated under dark condition and the observed conductivity profiles were found in Arrhenius behavior with temperature dominated by the thermionic emission model.
  • Article
    Citation - WoS: 3
    Citation - Scopus: 3
    Fabrication of Cdsexte1-X Thin Films by Sequential Growth Using Double Sources
    (Elsevier, 2021) Demir, M.; Gullu, H. H.; Terlemezoglu, M.; Parlak, M.
    CdSexTe(1-x) (CST) ternary thin films were fabricated by stacking thermally evaporated CdSe and electron beam evaporated CdTe layers. The final structure was achieved in a stoichiometric form of approximately Cd:Se:Te = 50:25:25. The post-annealing processes at 300, 400, and 450 degrees C were applied to trigger the compound formation of CST thin films. The X-ray diffraction (XRD) profiles revealed that CdTe and CdSe have major peaks at 23.9 degrees and 25.5 degrees corresponds to (111) direction in cubic zinc-blend structure. Raman modes of CdTe were observed at 140 and 168 cm(-1), while Raman modes of CdSe films were detected at 208 and 417 cm(-1). The post-annealing process was found to be an effective method in order to combine both diffraction peaks and the vibrational modes of CdTe and CdSe, consequently to form CST ternary alloy. Transmission spectroscopy analysis revealed that CST films have direct band gap value of 1.6 eV.