Search Results

Now showing 1 - 2 of 2
  • Article
    Citation - WoS: 5
    Citation - Scopus: 5
    Optical Properties of Tlgaxin1-x< Mixed Crystals (0.5 ≤ x ≤ 1) by Spectroscopic Ellipsometry, Transmission, and Reflection
    (Taylor & Francis Ltd, 2014) Isik, M.; Delice, S.; Gasanly, N. M.
    The layered semiconducting TlGaxIn1-xSe2-mixed crystals (0.5 <= x <= 1) were studied for the first time by spectroscopic ellipsometry measurements in the 1.2-6.2 eV spectral range at room temperature. The spectral dependence of the components of the complex dielectric function, refractive index, and extinction coefficient were revealed using an optical model. The interband transition energies in the studied samples were found from the analysis of the second-energy derivative spectra of the complex dielectric function. The effect of the isomorphic cation substitution (indium for gallium) on critical point energies in TlGaxIn1-xSe2 crystals was established. Moreover, the absorption edge of TlGaxIn1-xSe2 crystals have been studied through the transmission and reflection measurements in the wavelength range of 500-1100 nm. The analysis of absorption data revealed the presence of both optical indirect and direct transitions. It was found that the energy band gaps decrease with the increase of indium content in the studied crystals.
  • Article
    Citation - WoS: 2
    Citation - Scopus: 2
    Thermoluminescence Characteristics of Tl4gain3< Layered Single Crystals
    (Taylor & Francis Ltd, 2014) Delice, S.; Isik, M.; Gasanly, N. M.
    The properties of trapping centres in - as grown - Tl4GaIn3S8 layered single crystals were investigated in the temperature range of 10-300K using thermoluminescence (TL) measurements. TL curve was analysed to characterize the defects responsible for the observed peaks. Thermal activation energies of the trapping centres were determined using various methods: curve fitting, initial rise and peak shape methods. The results indicated that the peak observed in the low-temperature region composed of many overlapped peaks corresponding to distributed trapping centres in the crystal structure. The apparent thermal energies of the distributed traps were observed to be shifted from similar to 12 to similar to 125meV by increasing the illumination temperature from 10 to 36K. The analysis revealed that the first-order kinetics (slow retrapping) obeys for deeper level located at 292meV.