Search Results

Now showing 1 - 2 of 2
  • Article
    Citation - WoS: 4
    Citation - Scopus: 5
    Thermoluminescence Properties of Tl2ga2< Layered Single Crystals
    (Amer inst Physics, 2013) Delice, S.; Isik, M.; Bulur, E.; Gasanly, N. M.
    The trap center(s) in Tl2Ga2S3Se single crystals has been investigated from thermoluminescence (TL) measurements in the temperature range of 10-300 K. Curve fitting, initial rise, and peak shape methods were applied to observed TL glow curve to evaluate the activation energy, capture cross section, and attempt-to-escape frequency of the trap center. One trapping center has been revealed with activation energy of 16 meV. Moreover, the characteristics of trap distribution have been studied using an experimental technique based on different illumination temperature. An increase of activation energy from 16 to 58 meV was revealed for the applied illumination temperature range of 10-25K. (C) 2013 AIP Publishing LLC.
  • Article
    Citation - WoS: 19
    Citation - Scopus: 19
    Temperature-Dependent Band Gap Characteristics of Bi12sio20< Single Crystals
    (Amer inst Physics, 2019) Isik, M.; Delice, S.; Gasanly, N. M.; Darvishov, N. H.; Bagiev, V. E.
    Bi12SiO20 single crystals have attracted interest due to their remarkable photorefractive characteristics. Since bandgap and refractive index are related theoretically to each other, it takes much attention to investigate temperature dependency of bandgap energy to understand the behavior of photorefractive crystals. The present study aims at investigating structural and optical characteristics of photorefractive Bi12SiO20 single crystals grown by the Czochralski method. The structural characterization methods indicated that atomic composition ratios of constituent elements were well-matched with the chemical compound Bi12SiO20, and grown crystals have a cubic crystalline structure. Optical properties of crystals were investigated by room temperature Raman spectroscopy and temperature-dependent transmission measurements between 10 and 300 K. The analyses of transmittance spectra by absorption coefficient and derivative spectrophotometry techniques resulted in energy bandgaps decreasing from 2.61 to 2.48 eV and 2.64 to 2.53 eV as temperature was increased from 10 to 300 K. The Varshni model was applied to analyze temperature-bandgap energy dependency.