Temperature-Dependent Band Gap Characteristics of Bi<sub>12</Sub>sio<sub>20< Single Crystals

No Thumbnail Available

Date

2019

Authors

Isik, M.
Delice, S.
Gasanly, N. M.
Darvishov, N. H.
Bagiev, V. E.

Journal Title

Journal ISSN

Volume Title

Publisher

Amer inst Physics

Open Access Color

OpenAIRE Downloads

OpenAIRE Views

Research Projects

Organizational Units

Organizational Unit
Department of Electrical & Electronics Engineering
Department of Electrical and Electronics Engineering (EE) offers solid graduate education and research program. Our Department is known for its student-centered and practice-oriented education. We are devoted to provide an exceptional educational experience to our students and prepare them for the highest personal and professional accomplishments. The advanced teaching and research laboratories are designed to educate the future workforce and meet the challenges of current technologies. The faculty's research activities are high voltage, electrical machinery, power systems, signal and image processing and photonics. Our students have exciting opportunities to participate in our department's research projects as well as in various activities sponsored by TUBİTAK, and other professional societies. European Remote Radio Laboratory project, which provides internet-access to our laboratories, has been accomplished under the leadership of our department with contributions from several European institutions.

Journal Issue

Abstract

Bi12SiO20 single crystals have attracted interest due to their remarkable photorefractive characteristics. Since bandgap and refractive index are related theoretically to each other, it takes much attention to investigate temperature dependency of bandgap energy to understand the behavior of photorefractive crystals. The present study aims at investigating structural and optical characteristics of photorefractive Bi12SiO20 single crystals grown by the Czochralski method. The structural characterization methods indicated that atomic composition ratios of constituent elements were well-matched with the chemical compound Bi12SiO20, and grown crystals have a cubic crystalline structure. Optical properties of crystals were investigated by room temperature Raman spectroscopy and temperature-dependent transmission measurements between 10 and 300 K. The analyses of transmittance spectra by absorption coefficient and derivative spectrophotometry techniques resulted in energy bandgaps decreasing from 2.61 to 2.48 eV and 2.64 to 2.53 eV as temperature was increased from 10 to 300 K. The Varshni model was applied to analyze temperature-bandgap energy dependency.

Description

Gasanly, Nizami/0000-0002-3199-6686; Delice, Serdar/0000-0001-5409-6528; Gasanly, Nizami/0000-0002-3199-6686; Isik, Mehmet/0000-0003-2119-8266

Keywords

[No Keyword Available]

Turkish CoHE Thesis Center URL

Fields of Science

Citation

16

WoS Q

Q2

Scopus Q

Source

Volume

126

Issue

24

Start Page

End Page

Collections