16 results
Search Results
Now showing 1 - 10 of 16
Article Citation - WoS: 14Citation - Scopus: 26Deep Learning-Based Vehicle Classification for Low Quality Images(Mdpi, 2022) Tas, Sumeyra; Sari, Ozgen; Dalveren, Yaser; Pazar, Senol; Kara, Ali; Derawi, MohammadThis study proposes a simple convolutional neural network (CNN)-based model for vehicle classification in low resolution surveillance images collected by a standard security camera installed distant from a traffic scene. In order to evaluate its effectiveness, the proposed model is tested on a new dataset containing tiny (100 x 100 pixels) and low resolution (96 dpi) vehicle images. The proposed model is then compared with well-known VGG16-based CNN models in terms of accuracy and complexity. Results indicate that although the well-known models provide higher accuracy, the proposed method offers an acceptable accuracy (92.9%) as well as a simple and lightweight solution for vehicle classification in low quality images. Thus, it is believed that this study might provide useful perception and understanding for further research on the use of standard low-cost cameras to enhance the ability of the intelligent systems such as intelligent transportation system applications.Article From Street Canyons To Corridors: Adapting Urban Propagation Models for an Indoor IQRF Network(MDPI, 2025) Doyan, Talip Eren; Yalcinkaya, Bengisu; Dogan, Deren; Dalveren, Yaser; Derawi, MohammadAmong wireless communication technologies underlying Internet of Things (IoT)-based smart buildings, IQRF (Intelligent Connectivity Using Radio Frequency) technology is a promising candidate due to its low power consumption, cost-effectiveness, and wide coverage. However, effectively modeling the propagation characteristics of IQRF in complex indoor environments for simple and accurate network deployment remains challenging, as architectural elements like walls and corners cause substantial signal attenuation and unpredictable propagation behavior. This study investigates the applicability of a site-specific modeling approach, originally developed for urban street canyons, to characterize peer-to-peer (P2P) IQRF links operating at 868 MHz in typical indoor scenarios, including line-of-sight (LoS), one-turn, and two-turn non-line-of-sight (NLoS) configurations. The received signal powers are compared with well-known empirical models, including international telecommunication union radio communication sector (ITU-R) P.1238-9 and WINNER II, and ray-tracing simulations. The results show that while ITU-R P.1238-9 achieves lower prediction error under LoS conditions with a root mean square error (RMSE) of 5.694 dB, the site-specific approach achieves substantially higher accuracy in NLoS scenarios, maintaining RMSE values below 3.9 dB for one- and two-turn links. Furthermore, ray-tracing simulations exhibited notably larger deviations, with RMSE values ranging from 7.522 dB to 16.267 dB and lower correlation with measurements. These results demonstrate the potential of site-specific modeling to provide practical, computationally efficient, and accurate insights for IQRF network deployment planning in smart building environments.Article Citation - WoS: 2Citation - Scopus: 3Modelling and Design of Pre-Equalizers for a Fully Operational Visible Light Communication System(Mdpi, 2023) Bostanoglu, Murat; Dalveren, Yaser; Catak, Ferhat Ozgur; Kara, AliNowadays, Visible Light Communication (VLC) has gained much attention due to the significant advancements in Light Emitting Diode (LED) technology. However, the bandwidth of LEDs is one of the important concerns that limits the transmission rates in a VLC system. In order to eliminate this limitation, various types of equalization methods are employed. Among these, using digital pre-equalizers can be a good choice because of their simple and reusable structure. Therefore, several digital pre-equalizer methods have been proposed for VLC systems in the literature. Yet, there is no study in the literature that examines the implementation of digital pre-equalizers in a realistic VLC system based on the IEEE 802.15.13 standard. Hence, the purpose of this study is to propose digital pre-equalizers for VLC systems based on the IEEE 802.15.13 standard. For this purpose, firstly, a realistic channel model is built by collecting the signal recordings from a real 802.15.13-compliant VLC system. Then, the channel model is integrated into a VLC system modeled in MATLAB. This is followed by the design of two different digital pre-equalizers. Next, simulations are conducted to evaluate their feasibility in terms of the system's BER performance under bandwidth-efficient modulation schemes, such as 64-QAM and 256-QAM. Results show that, although the second pre-equalizer provides lower BERs, its design and implementation might be costly. Nevertheless, the first design can be selected as a low-cost alternative to be used in the VLC system.Article Citation - WoS: 8Citation - Scopus: 9Propagation Measurements for Iqrf Network in an Urban Environment(Mdpi, 2022) Bouzidi, Mohammed; Dalveren, Yaser; Mohamed, Marshed; Dalveren, Yaser; Moldsvor, Arild; Cheikh, Faouzi Alaya; Derawi, Mohammad; Dalveren, Yaser; Department of Electrical & Electronics Engineering; Department of Electrical & Electronics EngineeringRecently, IQRF has emerged as a promising technology for the Internet of Things (IoT), owing to its ability to support short- and medium-range low-power communications. However, real world deployment of IQRF-based wireless sensor networks (WSNs) requires accurate path loss modelling to estimate network coverage and other performances. In the existing literature, extensive research on propagation modelling for IQRF network deployment in urban environments has not been provided yet. Therefore, this study proposes an empirical path loss model for the deployment of IQRF networks in a peer-to-peer configured system where the IQRF sensor nodes operate in the 868 MHz band. For this purpose, extensive measurement campaigns are conducted outdoor in an urban environment for Line-of-Sight (LoS) and Non-Line-of-Sight (NLoS) links. Furthermore, in order to evaluate the prediction accuracy of well-known empirical path loss models for urban environments, the measurements are compared with the predicted path loss values. The results show that the COST-231 Walfisch-Ikegami model has higher prediction accuracy and can be used for IQRF network planning in LoS links, while the COST-231 Hata model has better accuracy in NLoS links. On the other hand, the effects of antennas on the performance of IQRF transceivers (TRs) for LoS and NLoS links are also scrutinized. The use of IQRF TRs with a Straight-Line Dipole Antenna (SLDA) antenna is found to offer more stable results when compared to IQRF (TRs) with Meander Line Antenna (MLA) antenna. Therefore, it is believed that the findings presented in this article could offer useful insights for researchers interested in the development of IoT-based smart city applications.Article Citation - WoS: 29Citation - Scopus: 33On the Performance of Variational Mode Decomposition-Based Radio Frequency Fingerprinting of Bluetooth Devices(Mdpi, 2020) Aghnaiya, Alghannai; Dalveren, Yaser; Kara, AliRadio frequency fingerprinting (RFF) is one of the communication network's security techniques based on the identification of the unique features of RF transient signals. However, extracting these features could be burdensome, due to the nonstationary nature of transient signals. This may then adversely affect the accuracy of the identification of devices. Recently, it has been shown that the use of variational mode decomposition (VMD) in extracting features from Bluetooth (BT) transient signals offers an efficient way to improve the classification accuracy. To do this, VMD has been used to decompose transient signals into a series of band-limited modes, and higher order statistical (HOS) features are extracted from reconstructed transient signals. In this study, the performance bounds of VMD in RFF implementation are scrutinized. Firstly, HOS features are extracted from the band-limited modes, and then from the reconstructed transient signals directly. Performance comparison due to both HOS feature sets is presented. Moreover, the lower SNR bound within which the VMD can achieve acceptable accuracy in the classification of BT devices is determined. The approach has been tested experimentally with BT devices by employing a Linear Support Vector Machine (LSVM) classifier. According to the classification results, a higher classification performance is achieved (similar to 4% higher) at lower SNR levels (-5-5 dB) when HOS features are extracted from band-limited modes in the implementation of VMD in RFF of BT devices.Article Citation - WoS: 6Citation - Scopus: 10Lpwan Cyber Security Risk Analysis: Building a Secure Iqrf Solution(Mdpi, 2023) Bouzidi, Mohammed; Amro, Ahmed; Dalveren, Yaser; Cheikh, Faouzi Alaya; Derawi, MohammadLow-power wide area network (LPWAN) technologies such as IQRF are becoming increasingly popular for a variety of Internet of Things (IoT) applications, including smart cities, industrial control, and home automation. However, LPWANs are vulnerable to cyber attacks that can disrupt the normal operation of the network or compromise sensitive information. Therefore, analyzing cybersecurity risks before deploying an LPWAN is essential, as it helps identify potential vulnerabilities and threats as well as allowing for proactive measures to be taken to secure the network and protect against potential attacks. In this paper, a security risk analysis of IQRF technology is conducted utilizing the failure mode effects analysis (FMEA) method. The results of this study indicate that the highest risk corresponds to four failure modes, namely compromised end nodes, a compromised coordinator, a compromised gateway and a compromised communication between nodes. Moreover, through this methodology, a qualitative risk evaluation is performed to identify potential security threats in the IQRF network and propose countermeasures to mitigate the risk of cyber attacks on IQRF networks.Article Citation - WoS: 7Citation - Scopus: 8Flexible and Lightweight Mitigation Framework for Distributed Denial-Of Attacks in Container-Based Edge Networks Using Kubernetes(Ieee-inst Electrical Electronics Engineers inc, 2024) Koksal, Sarp; Catak, Ferhat Ozgur; Dalveren, YaserMobile Edge Computing (MEC) has a significant potential to become more prevalent in Fifth Generation (5G) networks, requiring resource management that is lightweight, agile, and dynamic. Container-based virtualization platforms, such as Kubernetes, have emerged as key enablers for MEC environments. However, network security and data privacy remain significant concerns, particularly due to Distributed Denial-of-Service (DDoS) attacks that threaten the massive connectivity of end-devices. This study proposes a defense mechanism to mitigate DDoS attacks in container-based MEC networks using Kubernetes. The mechanism dynamically scales Containerized Network Functions (CNFs) with auto-scaling through an Intrusion Detection and Prevention System (IDPS). The architecture of the proposed mechanism leverages distributed edge clusters and Kubernetes to manage resources and balance the load of IDPS CNFs. Experiments conducted in a real MEC environment using OpenShift and Telco-grade MEC profiles demonstrate the effectiveness of the proposed mechanism against Domain Name System (DNS) flood and Yo-Yo attacks. Results also verify that Kubernetes efficiently meets the lightweight, agile, and dynamic resource management requirements of MEC networks.Article Citation - WoS: 17Citation - Scopus: 24Use of the Iqrf Technology in Internet-Of Smart Cities(Ieee-inst Electrical Electronics Engineers inc, 2020) Bouzidi, Mohammed; Dalveren, Yaser; Cheikh, Faouzi Alaya; Derawi, MohammadIn recent years, there has been a growing interest in building smart cities based on the Internet of Things (IoT) technology. However, selecting a low-cost IoT wireless technology that enables low-power connectivity remains one of the key challenges in integrating IoT to smart cities. In this context, the IQRF technology offers promising opportunities to provide cost-effective solutions. Yet, in the literature, there are limited studies on utilizing IQRF technology for smart city applications. Therefore, this study is aimed at increasing the awareness about the use of IQRF technology in IoT-based smart city development. For this purpose, a review of smart city architectures along with challenges/requirements in adopting IoT for smart cities is provided. Then, some of the common cost-effective IoT wireless technologies that enable low-power consumption are briefly presented. Next, the benefits of IQRF technology over other technologies are discussed by making theoretical comparisons based on technical documentations and reports. Moreover, the research efforts currently being undertaken by the authors as a part of ongoing project on the development of IoT-based smart city system in Gj & x00F8;vik Municipality, Norway, are conceptually introduced. Finally, the future research directions are addressed.Article Citation - WoS: 6Citation - Scopus: 7A Simplified Method Based on Rssi Fingerprinting for Iot Device Localization in Smart Cities(Ieee-inst Electrical Electronics Engineers inc, 2024) Dogan, Deren; Dalveren, Yaser; Kara, Ali; Derawi, MohammadThe Internet of Things (IoT) has significantly improved location-based services in smart cities, such as automated public transportation and traffic management. Estimating the location of connected devices is a critical problem. Low Power Wide Area Network (LPWAN) technologies are used for localization due to their low power consumption and long communication range. Recent advances in Machine Learning have made Received Signal Strength Indicator (RSSI) fingerprinting with LPWAN technologies effective. However, this requires a connection between devices and gateways or base stations, which can increase network deployment, maintenance, and installation costs. This study proposes a cost-effective RSSI fingerprinting solution using IQRF technology for IoT device localization. The region of interest is divided into grids to provide training locations, and measurements are conducted to create a training dataset containing RSSI fingerprints. Pattern matching is performed to localize the device by comparing the fingerprint of the end device with the fingerprints in the created database. To evaluate the efficiency of the proposed solution, measurements were conducted in a short-range local area ( $80\times 30$ m) at 868 MHz. In the measurements, four IQRF nodes were utilized to receive the RSSIs from a transmitting IQRF node. The performances of well-known ML classifiers on the created dataset are then comparatively assessed in terms of test accuracy, prediction speed, and training time. According to the results, the Bagged Trees classifier demonstrated the highest accuracy with 96.87%. However, with an accuracy of 95.69%, the Weighted k-NN could also be a reasonable option for real-world implementations due to its faster prediction speed (37615 obs/s) and lower training time (28.1 s). To the best of the authors' knowledge, this is the first attempt to explore the feasibility of the IQRF networks to develop a RSSI fingerprinting-based IoT device localization in the literature. The promising results suggest that the proposed method could be used as a low-cost alternative for IoT device localization in short-range location-based smart city applications.Article Citation - WoS: 9Citation - Scopus: 12A Simplified Model for Characterizing the Effects of Scattering Objects and Human Body Blocking Indoor Links at 28 Ghz(Ieee-inst Electrical Electronics Engineers inc, 2019) Dalveren, Yaser; Alabish, Ahmed H.; Kara, AliThis paper presents a simple approach to characterize the effects of scattering objects around indoor links at 28 GHz while the link is fully blocked by a human body. The effects of scattering objects nearby the link were studied by conducting measurements with a metallic reflector and the human body. Here, the basic mechanisms of wave propagation, such as reflection and diffraction, were accounted for each scattering object. To predict the attenuation caused by the metallic reflector, a specular reflection model was employed in reflection modeling. In diffraction modeling, on the other hand, the double knife-edge diffraction (DKED) model was exploited to predict the attenuation by the human body. Simulations were then compared with measurements to evaluate the prediction accuracy of the models. Results indicate that the presented simple models work well for indoor links. Therefore, the results of this paper could be extended to model multiple human bodies near the indoor links of fifth generation (5G) systems.

