7 results
Search Results
Now showing 1 - 7 of 7
Article Citation - WoS: 19Citation - Scopus: 20Optical characteristics of Bi12SiO20 single crystals by spectroscopic ellipsometry(Elsevier Sci Ltd, 2020) Isik, M.; Delice, S.; Nasser, H.; Gasanly, N. M.; Darvishov, N. H.; Bagiev, V. E.Structural and optical characteristics of Bi12SiO20 single crystal grown by the Czochralski method were investigated by virtue of X-ray diffraction (XRD) and spectroscopic ellipsometry measurements. XRD analysis indicated that the studied crystal possesses cubic structure with lattice parameters of a = 1.0107 nm. Spectral dependencies of several optical parameters like complex dielectric constant, refractive index, extinction and absorption coefficients were determined using ellipsometry experiments performed in the energy region of 1.2-6.2 eV. The energy band gap of Bi12SiO20 crystals was found to be 3.25 eV by utilizing absorption coefficient analysis. Moreover, critical point energies were calculated as 3.54, 4.02, 4.82 and 5.58 eV from analyses of the second energy derivative spectra of the complex dielectric constant.Article Citation - WoS: 8Citation - Scopus: 8Spectroscopic ellipsometry study of Bi12TiO20 single crystals(Springer, 2021) Isik, M.; Gasanly, N. M.; Darvishov, N. H.; Bagiev, V. E.Bi12XO20 (X: Si, Ge, Ti, etc.) ternary compounds have attracted attention especially due to their fascinating photorefractive characteristics. The present paper introduces the structural and optical characteristics of Bi12TiO20 single crystals grown by Czochralski method. X-ray diffraction pattern of the compound exhibited sharp and intensive peaks corresponding to parallel planes of cubic crystalline structure. The lattice constant of the cubic structure was determined as a = 1.0118 nm using a diffraction pattern indexing program. The optical characterization of the Bi12TiO20 single crystals was carried through spectroscopic ellipsometry experiments performed in the 1.2-5.0 eV spectral range. The spectral dependencies of refractive index, extinction coefficient, and complex dielectric function were revealed analyzing experimental ellipsometric data under the light of sample-air optical model. The band gap energy of the compound was determined as 3.34 eV from the analyses of absorption coefficient. Three critical points at 3.51, 4.10, and 4.71 eV were obtained from the analyses of components of dielectric function using their second-energy derivative spectra.Article Citation - WoS: 6Citation - Scopus: 5Growth and Characterization of Pbmo0.75w0.25o4 Single Crystal: a Promising Material for Optical Applications(Elsevier Science Sa, 2023) Isik, M.; Gasanly, N. M.; Darvishov, N. H.; Bagiev, V. E.The present paper reports the structural and optical properties of PbMo0.75W0.25O4 single crystals grown by Czochralski method. XRD pattern of the crystal indicated well-defined two diffraction peaks associated with tetragonal crystalline structure. Raman and infrared spectra of the grown single crystals were presented to get information about the vibrational characteristics. Observed Raman modes were associated with modes of PbMoO4 and PbWO4. Eight bands were revealed in the infrared spectrum. The bands observed in the spectrum were attributed to multiphonon absorption processes. Transmission spectrum was measured in the 375-700 nm spectral region. The analyses of the spectrum resulted in direct band gap energy of 3.12 +/- 0.03 eV. The compositional dependent band gap energy plot was drawn considering the reported band gap energies of PbMoO4, PbWO4 and revealed band gap of PbMo0.75W0.25O4 single crystal. An almost linear behavior of composition-band gap energy was seen for PbMo1-xWxO4 compounds. Urbach energy was also found from the absorption coefficient analysis as 0.082 +/- 0.002 eV.Article Citation - WoS: 8Citation - Scopus: 8Temperature-Tuned Bandgap Characteristics of Bi12tio20< Sillenite Single Crystals(Springer, 2021) Isik, M.; Delice, S.; Gasanly, N. M.; Darvishov, N. H.; Bagiev, V. E.Bi12MO20 (M: Si, Ge, Ti, etc.) compounds are known as sillenites having fascinating photorefractive characteristics. The present paper reports the structural and optical characteristics of one of the members of this family, Bi12TiO20 single crystals, grown by Czochralski method. X-ray diffraction pattern of the crystal presented sharp and intensive peaks associated with planes of cubic crystalline structure with lattice constant of a = 1.0142 nm. The optical properties were studied by means of room temperature Raman and temperature-dependent transmission experiments at various temperatures between 10 and 300 K. Raman spectrum indicated peaks around 127, 162, 191, 219, 261, 289, 321, 497 and 537 cm(-1). The analyses of transmittance spectra indicated the increase of direct bandgap energy from 2.30 to 2.56 eV as temperature was decreased from room temperature to 10 K. The temperature-dependent bandgap characteristics of Bi12TiO20 were analyzed by means of Varshni and O'Donnell-Chen models. The analyses under the light of these models resulted in absolute zero bandgap energy of E-g(0) = 2.56(4) eV, rate of change of bandgap energy of gamma = - 1.11 x 10(-3) eV/K and average phonon energy of < E-ph & rang; = 8.6 meV.Article Citation - WoS: 7Citation - Scopus: 7Temperature dependent bandgap in NaBi(WO4)2 single crystals(Elsevier Gmbh, 2022) Isik, M.; Gasanly, N. M.; Darvishov, N. H.; Bagiev, V. E.The double tungstates have been an attractive research interest due to their optoelectronic applications. In the present work, NaBi(WO4)(2), one of the members of double tungstates family, was grown by Czochralski method as single crystal form and optically investigated. X-ray diffraction pattern presented three peaks associated with tetragonal scheelite crystalline structure. Optical properties of the crystal were studied by performing temperature-dependent transmission measurements between 10 and 300 K. The shift of the absorption edge to higher energies was observed with decrease of temperature. The analyses indicated that direct band gap energy increases from 3.50 to 3.60 eV when the temperature was decreased from room temperature to 10 K. The temperature dependency of bandgap was studied considering the Varshni model and fitting of the experimental data under the light of model presented the optical parameters of band gap energy at 0 K, rate of band gap change with temperature and Debye temperature as E-g(0) = 3.61 eV, gamma = 8.83 x 10(-4) eV/K and beta = 456 K, respectively. Urbach energies were also determined from the analyses as 122 and 113 meV for 10 and 300 K experimental data, respectively.Article Citation - WoS: 7Citation - Scopus: 6Investigation of Optical Characteristics of Pbmoo4 Single Crystals by Spectroscopic Ellipsometry(Elsevier Gmbh, 2022) Delice, S.; Isik, M.; Gasanly, N. M.; Darvishov, N. H.; Bagiev, V. E.In this study, we investigated the optical properties of PbMoO4 single crystals grown by Czochralski method. Spectroscopic ellipsometry measurements were carried out in the energy region between 1.0 and 5.5 eV at room temperature. X-ray diffraction measurements were achieved for structural characterization. The resulted pattern exhibited one peak belonging to (200) plane. Spectral variations of complex dielectric function, complex refractive index, absorption coefficient and dissipation function were obtained from the analyses of ellipsometry data. Real part of dielectric function increased up to 4.0 eV and then decreased suddenly at above this value. Zero frequency refractive index and dielectric constant were found to be 2.04 and 4.15, respectively. High frequency dielectric constant was determined to be 4.36. Optical band gap of PbMoO4 crystals was calculated as 3.09 eV. Two critical points with energies of 3.57 and 4.34 eV were estimated from the analyses of second-energy derivative spectra of real and imaginary parts of dielectric function. It was determined that [MoO4]2- complexes and charge transfer from Pb2+ ions into the neighboring Mo groups were responsible for these interband transitions. Dissipation function increased with increasing photon energy.Article Citation - WoS: 16Citation - Scopus: 15Effect of Temperature on Band Gap of Pbwo4 Single Crystals Grown by Czochralski Method(Iop Publishing Ltd, 2022) Isik, M.; Gasanly, N. M.; Darvishov, N. H.; Bagiev, V. E.The structural and optical properties of PbWO4 single crystals grown by Czochralski method and investigated by x-ray diffraction (XRD) and transmission experiments. XRD pattern presented well-defined and intensive peaks related with tetragonal scheelite structure. Transmission experiments were accomplished for the first time at various temperatures between 10 and 300 K on PbWO4 single crystals to reveal variation of band gap with temperature. Derivative spectroscopy method presented the experimentally observed band gap energy as increasing from 3.20 to 3.35 eV when the temperature was decreased to 10 K from room temperature. The revealed energy was associated with transition taking place between delocalized and trap levels. Temperature-band gap energy plot was analyzed by Varshni and Bose-Einstein models. The fitting processes under the light of these models revealed optical characteristics of absolute zero experimentally observed band gap, variation rate of gap energy with temperature and Debye temperature of PbWO4 single crystal.

