Effect of temperature on band gap of PbWO<sub>4</sub> single crystals grown by Czochralski method

No Thumbnail Available

Date

2022

Journal Title

Journal ISSN

Volume Title

Publisher

Iop Publishing Ltd

Research Projects

Organizational Units

Organizational Unit
Department of Electrical & Electronics Engineering
Department of Electrical and Electronics Engineering (EE) offers solid graduate education and research program. Our Department is known for its student-centered and practice-oriented education. We are devoted to provide an exceptional educational experience to our students and prepare them for the highest personal and professional accomplishments. The advanced teaching and research laboratories are designed to educate the future workforce and meet the challenges of current technologies. The faculty's research activities are high voltage, electrical machinery, power systems, signal and image processing and photonics. Our students have exciting opportunities to participate in our department's research projects as well as in various activities sponsored by TUBİTAK, and other professional societies. European Remote Radio Laboratory project, which provides internet-access to our laboratories, has been accomplished under the leadership of our department with contributions from several European institutions.

Journal Issue

Abstract

The structural and optical properties of PbWO4 single crystals grown by Czochralski method and investigated by x-ray diffraction (XRD) and transmission experiments. XRD pattern presented well-defined and intensive peaks related with tetragonal scheelite structure. Transmission experiments were accomplished for the first time at various temperatures between 10 and 300 K on PbWO4 single crystals to reveal variation of band gap with temperature. Derivative spectroscopy method presented the experimentally observed band gap energy as increasing from 3.20 to 3.35 eV when the temperature was decreased to 10 K from room temperature. The revealed energy was associated with transition taking place between delocalized and trap levels. Temperature-band gap energy plot was analyzed by Varshni and Bose-Einstein models. The fitting processes under the light of these models revealed optical characteristics of absolute zero experimentally observed band gap, variation rate of gap energy with temperature and Debye temperature of PbWO4 single crystal.

Description

Gasanly, Nizami/0000-0002-3199-6686; Isik, Mehmet/0000-0003-2119-8266

Keywords

PbWO4, optical properties, tungstate, transmittance

Turkish CoHE Thesis Center URL

Citation

10

WoS Q

Q2

Scopus Q

Source

Volume

97

Issue

4

Start Page

End Page

Collections