18 results
Search Results
Now showing 1 - 10 of 18
Article Citation - WoS: 2Citation - Scopus: 2Structural Design Optimization of Multi-Layer Spherical Pressure Vessels: a Metaheuristic Approach(Springer, 2019) Akis, Tolga; Azad, Saeid KazemzadehThis study addresses the optimum design problem of multi-layer spherical pressure vessels based on von Mises yield criterion. In order to compute the structural responses under internal pressure, analytical solutions for one-, two-, and three-layer spherical pressure vessels are provided. A population-based metaheuristic algorithm is reformulated for optimum material selection as well as thickness optimization of multi-layer spherical pressure vessels. Furthermore, in order to enhance the computational efficiency of the optimization algorithm, upper bound strategy is also integrated with the algorithm for reducing the total number of structural response evaluations during the optimization iterations. The performance of the algorithm is investigated through weight and cost minimization of one-, two- and three-layer spherical pressure vessels and the results are presented in detail. The obtained numerical results, based on different internal pressures as well as vessel sizes, indicate the usefulness and efficiency of the employed methodology in optimum design of multi-layer spherical pressure vessels.Article Citation - WoS: 11Citation - Scopus: 12E-Constraint Guided Stochastic Search With Successive Seeding for Multi-Objective Optimization of Large-Scale Steel Double-Layer Grids(Elsevier, 2022) Azad, Saeid Kazemzadeh; Aminbakhsh, SamanThis paper proposes a design-driven structural optimization algorithm named e-constraint guided stochastic search (e-GSS) for multi-objective design optimization of large-scale steel double-layer grids having numerous discrete design variables. Based on the well-known e-constraint method, first, the multi-objective optimization problem is transformed into a set of single-objective optimization problems. Next, each single-objective optimization problem is tackled using an enhanced reformulation of the standard guided stochastic search algorithm proposed based on a stochastic maximum incremental/decremental step size approach. Moreover, a successive seeding strategy is employed in conjunction with the proposed e-GSS algorithm to improve its performance in multi-objective optimization of large-scale steel double-layer grids. The numerical results obtained through multi-objective optimization of three challenging test examples, namely a 1728-member double-layer compound barrel vault, a 2304-member double-layer scallop dome, and a 2400-member double-layer multi-radial dome, demonstrate the usefulness of the proposed e-GSS algorithm in generating Pareto fronts of the foregoing multi-objective structural optimization problems with up to 2400 distinct sizing variables.Article Citation - WoS: 25Citation - Scopus: 32High-Dimensional Optimization of Large-Scale Steel Truss Structures Using Guided Stochastic Search(Elsevier Science inc, 2021) Azad, Saeid Kazemzadeh; Aminbakhsh, SamanDespite a plethora of truss optimization algorithms devised in the recent literature of structural optimization, still high-dimensional large-scale truss optimization problems have not been properly tackled basically due to the excessive computational effort required to handle the foregoing instances. In this study, application of a recently developed design-driven heuristic, namely guided stochastic search (GSS), is extended to a more challenging class of truss optimization problems having thousands of design variables. Two variants of the algorithm, namely GSSA and GSSB, have been employed for sizing optimization of four high-dimensional examples of steel trusses, i.e., a 2075-member single-layer onion dome, a 2688-member double-layer open dome, a 6000-member doublelayer scallop dome, and a 15048-member double-layer grid as per AISC-LRFD specification. The numerical results obtained indicate the efficiency of GSSA and GSSB in handling high-dimensional instances of large-scale steel trusses with up to 15048 discrete design variables.Article Citation - WoS: 17Citation - Scopus: 16Discrete Sizing of Steel Frames Using Adaptive Dimensional Search Algorithm(Budapest Univ Technology Economics, 2019) Hasancebi, Oguzhan; Azad, Saeid KazemzadehAdaptive dimensional search (ADS) algorithm is a recently proposed metaheuristic optimization technique for discrete structural optimization problems. In this study, discrete sizing optimization problem of steel frames is tackled using the ADS algorithm. An important feature of the algorithm is that it does not use any metaphor as an underlying principle for its implementation. Instead, the algorithm employs an efficient performance-oriented methodology at each iteration for convergence to the optimum or a near optimum solution. The performance of the ADS is investigated through optimum design of five real-size steel frame structures and the results are compared versus several contemporary metaheuristic techniques. The comparison of the obtained numerical results with those of available designs in the literature reveals the reliability and efficiency of the ADS in optimum design of steel frames.Article Citation - Scopus: 1An Enhanced Guided Stochastic Search With Repair Deceleration Mechanism for Very High-Dimensional Optimization Problems of Steel Double-Layer Grids(Springer, 2024) Azad, Saeid Kazemzadeh; Aminbakhsh, Saman; Gandomi, Amir H.Finding reasonably good solutions using a fewer number of objective function evaluations has long been recognized as a good attribute of an optimization algorithm. This becomes more important, especially when dealing with very high-dimensional optimization problems, since contemporary algorithms often need a high number of iterations to converge. Furthermore, the excessive computational effort required to handle the large number of design variables involved in the optimization of large-scale steel double-layer grids with complex configurations is perceived as the main challenge for contemporary structural optimization techniques. This paper aims to enhance the convergence properties of the standard guided stochastic search (GSS) algorithm to handle computationally expensive and very high-dimensional optimization problems of steel double-layer grids. To this end, a repair deceleration mechanism (RDM) is proposed, and its efficiency is evaluated through challenging test examples of steel double-layer grids. First, parameter tuning based on rigorous analyses of two preliminary test instances is performed. Next, the usefulness of the proposed RDM is further investigated through two very high-dimensional instances of steel double-layer grids, namely a 21,212-member free-form double-layer grid, and a 25,514-member double-layer multi-dome, with 21,212 and 25,514 design variables, respectively. The obtained numerical results indicate that the proposed RDM can significantly enhance the convergence rate of the GSS algorithm, rendering it an efficient tool to handle very high-dimensional sizing optimization problems.Article Citation - WoS: 3Cost Efficient Design of Mechanically Stabilized Earth Walls Using Adaptive Dimensional Search Algorithm(Turkish Chamber Civil Engineers, 2020) Azad, Saeid Kazemzadeh; Akış, EbruMechanically stabilized earth walls are among the most commonly used soil-retaining structural systems in the construction industry. This study addresses the optimum design problem of mechanically stabilized earth walls using a recently developed metaheuristic optimization algorithm, namely adaptive dimensional search. For a cost efficient design, different types of steel reinforcement as well as reinforced backfill soil are treated as discrete design variables. The performance of the adaptive dimensional search algorithm is investigated through cost optimization instances of mechanically stabilized earth walls under realistic design criteria specified by standard design codes. The numerical results demonstrate the efficiency and robustness of the adaptive dimensional search algorithm in minimum cost design of mechanically stabilized earth walls and further highlight the usefulness of design optimization in engineering practice.Article Citation - WoS: 47Citation - Scopus: 45Enhanced Hybrid Metaheuristic Algorithms for Optimal Sizing of Steel Truss Structures With Numerous Discrete Variables(Springer, 2017) Azad, Saeid KazemzadehThe advent of modern computing technologies paved the way for development of numerous efficient structural design optimization tools in the recent decades. In the present study sizing optimization problem of steel truss structures having numerous discrete variables is tackled using combined forms of recently proposed metaheuristic techniques. Three guided, and three guided hybrid metaheuristic algorithms are developed by integrating a design oriented strategy to the stochastic search properties of three recently proposed metaheuristic optimization techniques, namely adaptive dimensional search, modified big bang-big crunch, and exponential big bang-big crunch algorithms. The performances of the proposed guided, and guided hybrid metaheuristic algorithms are compared to those of standard variants through optimum design of real-size steel truss structures with up to 728 design variables according to AISC-LRFD specification. The numerical results reveal that the hybrid form of adaptive dimensional search and exponential big bang-big crunch algorithm is the most promising algorithm amongst the other investigated techniques.Article Citation - WoS: 11Citation - Scopus: 13Automated Selection of Optimal Material for Pressurized Multi-Layer Composite Tubes Based on an Evolutionary Approach(Springer London Ltd, 2018) Azad, Saeid Kazemzadeh; Akis, TolgaDecision making on the configuration of material layers as well as thickness of each layer in composite assemblies has long been recognized as an optimization problem. Today, on the one hand, abundance of industrial alloys with different material properties and costs facilitates fabrication of more economical or light weight assemblies. On the other hand, in the design stage, availability of different alternative materials apparently increases the complexity of the design optimization problem and arises the need for efficient optimization techniques. In the present study, the well-known big bang-big crunch optimization algorithm is reformulated for optimum design of internally pressurized tightly fitted multi-layer composite tubes with axially constrained ends. An automated material selection and thickness optimization approach is employed for both weight and cost minimization of one-, two-, and three-layer tubes, and the obtained results are compared. The numerical results indicate the efficiency of the proposed approach in practical optimum design of multi-layer composite tubes under internal pressure and quantify the optimality of different composite assemblies compared to one-layer tubes.Article Citation - WoS: 60Citation - Scopus: 64Seeding the Initial Population With Feasible Solutions in Metaheuristic Optimization of Steel Trusses(Taylor & Francis Ltd, 2018) Azad, Saeid KazemzadehIn spite of considerable research work on the development of efficient algorithms for discrete sizing optimization of steel truss structures, only a few studies have addressed non-algorithmic issues affecting the general performance of algorithms. For instance, an important question is whether starting the design optimization from a feasible solution is fruitful or not. This study is an attempt to investigate the effect of seeding the initial population with feasible solutions on the general performance of metaheuristic techniques. To this end, the sensitivity of recently proposed metaheuristic algorithms to the feasibility of initial candidate designs is evaluated through practical discrete sizing of real-size steel truss structures. The numerical experiments indicate that seeding the initial population with feasible solutions can improve the computational efficiency of metaheuristic structural optimization algorithms, especially in the early stages of the optimization. This paves the way for efficient metaheuristic optimization of large-scale structural systems.Article Citation - WoS: 11Citation - Scopus: 11A Standard Benchmarking Suite for Structural Optimization Algorithms: Iscso 2016-2022(Elsevier Science inc, 2023) Azad, Saeid Kazemzadeh; Azad, Saeıd Kazemzadeh; Azad, Sina Kazemzadeh; Azad, Saeıd Kazemzadeh; Department of Civil Engineering; Department of Civil EngineeringBenchmarking is an essential part of developing efficient structural optimization techniques. Despite the advent of numerous metaheuristic techniques for solving truss optimization problems, benchmarking new algorithms is often carried out using a selection of classic test examples which are indeed unchallenging for contemporary sophisticated optimization algorithms. Furthermore, the limited optimization results available in the literature on new test examples are usually not accurately comparable. This is typically due to the lack of infromation about the performance of the investigated algorithms and the inconsistencies between the studies in terms of adopted test examples for benchmarking, optimization problem formulation, maximum number of objective function evaluations and other similar issues. Accordingly, there exists a need for developing new standard test suites composed of easily reproducible challenging test examples with rigorous and comparable performance evaluation results of algorithms on these test suites. To this end, the present work aims to propose a new baseline for benchmarking structural optimization algorithms, using a set of challenging sizing and shape optimization problems of truss structures selected from the international student competition in structural optimization (ISCSO) instances. The most recent six structural optimization examples from the ISCSO are tackled using a representative metaheuristic structural optimization algorithm. The statistical results of all the optimization runs using the proposed benchmarking suite are provided to pave the way for more rigorous benchmarking of structural optimization algorithms.

