High-dimensional optimization of large-scale steel truss structures using guided stochastic search

No Thumbnail Available

Date

2021

Journal Title

Journal ISSN

Volume Title

Publisher

Elsevier Science inc

Research Projects

Organizational Units

Organizational Unit
Civil Engineering
(2000)
The Atılım University Department of Civil Engineering was founded in 2000 as a pioneer for the Departments of Civil Engineering among the foundation schools of Ankara. It offers education in English. The Department of Civil Engineering has an academic staff qualified in all areas of the education offered. In addition to a high level of academic learning that benefits from learning opportunities through practice at its seven laboratories, the Department also offers a Cooperative Education program conducted in cooperation with renowned organizations in the construction sector. Accredited by MÜDEK (Association of Evaluation and Accreditation of Engineering Programs) (in 2018), our Department has been granted the longest period of accreditation to ever achieve through the association (six years). The accreditation is recognized by ENAEE (European Network for Accreditation of Engineering Education), and other international accreditation boards.
Organizational Unit
Department of Civil Engineering
Civil Engineering Department of Atılım University, this opportunity can be attained by two Master of Science programs (with thesis or non-thesis). These programs are divided into the following subdivisions: 1) Construction Management, 2) Materials of Construction, 3) Geotechnical Engineering, 4) Hydromechanics and Water Resources Engineering, 5) Structural Engineering and Mechanics, and 6) Transportation Engineering. So, you can find among these alternatives, a subdiscipline that focuses on your interests and allows you to work toward your career goals. Civil Engineering Department of Atılım University which has a friendly faculty comprised of members with degrees from renowned international universities, laboratories for both educational and research purposes, and other facilities like computer infrastructure and classrooms well-suited for a good graduate education.

Journal Issue

Abstract

Despite a plethora of truss optimization algorithms devised in the recent literature of structural optimization, still high-dimensional large-scale truss optimization problems have not been properly tackled basically due to the excessive computational effort required to handle the foregoing instances. In this study, application of a recently developed design-driven heuristic, namely guided stochastic search (GSS), is extended to a more challenging class of truss optimization problems having thousands of design variables. Two variants of the algorithm, namely GSSA and GSSB, have been employed for sizing optimization of four high-dimensional examples of steel trusses, i.e., a 2075-member single-layer onion dome, a 2688-member double-layer open dome, a 6000-member doublelayer scallop dome, and a 15048-member double-layer grid as per AISC-LRFD specification. The numerical results obtained indicate the efficiency of GSSA and GSSB in handling high-dimensional instances of large-scale steel trusses with up to 15048 discrete design variables.

Description

Aminbakhsh, Saman/0000-0002-4389-1910; Kazemzadeh Azad, Saeid/0000-0001-9309-607X

Keywords

Structural optimization, Large-scale steel trusses, Principle of virtual work, Guided stochastic search, High-dimensional optimization, Integrated force method

Turkish CoHE Thesis Center URL

Citation

18

WoS Q

Q2

Scopus Q

Source

Volume

33

Issue

Start Page

1439

End Page

1456

Collections