High-Dimensional Optimization of Large-Scale Steel Truss Structures Using Guided Stochastic Search

dc.authorid Aminbakhsh, Saman/0000-0002-4389-1910
dc.authorid Kazemzadeh Azad, Saeid/0000-0001-9309-607X
dc.authorscopusid 57193753354
dc.authorscopusid 55768552300
dc.authorwosid Aminbakhsh, Saman/S-6864-2019
dc.contributor.author Azad, Saeid Kazemzadeh
dc.contributor.author Aminbakhsh, Saman
dc.contributor.other Civil Engineering
dc.contributor.other Department of Civil Engineering
dc.date.accessioned 2024-07-05T15:21:28Z
dc.date.available 2024-07-05T15:21:28Z
dc.date.issued 2021
dc.department Atılım University en_US
dc.department-temp [Azad, Saeid Kazemzadeh; Aminbakhsh, Saman] Atilim Univ, Dept Civil Engn, Ankara, Turkey en_US
dc.description Aminbakhsh, Saman/0000-0002-4389-1910; Kazemzadeh Azad, Saeid/0000-0001-9309-607X en_US
dc.description.abstract Despite a plethora of truss optimization algorithms devised in the recent literature of structural optimization, still high-dimensional large-scale truss optimization problems have not been properly tackled basically due to the excessive computational effort required to handle the foregoing instances. In this study, application of a recently developed design-driven heuristic, namely guided stochastic search (GSS), is extended to a more challenging class of truss optimization problems having thousands of design variables. Two variants of the algorithm, namely GSSA and GSSB, have been employed for sizing optimization of four high-dimensional examples of steel trusses, i.e., a 2075-member single-layer onion dome, a 2688-member double-layer open dome, a 6000-member doublelayer scallop dome, and a 15048-member double-layer grid as per AISC-LRFD specification. The numerical results obtained indicate the efficiency of GSSA and GSSB in handling high-dimensional instances of large-scale steel trusses with up to 15048 discrete design variables. en_US
dc.identifier.citationcount 18
dc.identifier.doi 10.1016/j.istruc.2021.05.035
dc.identifier.endpage 1456 en_US
dc.identifier.issn 2352-0124
dc.identifier.scopus 2-s2.0-85107859081
dc.identifier.startpage 1439 en_US
dc.identifier.uri https://doi.org/10.1016/j.istruc.2021.05.035
dc.identifier.uri https://hdl.handle.net/20.500.14411/2092
dc.identifier.volume 33 en_US
dc.identifier.wos WOS:000702824700004
dc.identifier.wosquality Q2
dc.institutionauthor Aminbakhsh, Saman
dc.institutionauthor Azad, Saeıd Kazemzadeh
dc.language.iso en en_US
dc.publisher Elsevier Science inc en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.scopus.citedbyCount 30
dc.subject Structural optimization en_US
dc.subject Large-scale steel trusses en_US
dc.subject Principle of virtual work en_US
dc.subject Guided stochastic search en_US
dc.subject High-dimensional optimization en_US
dc.subject Integrated force method en_US
dc.title High-Dimensional Optimization of Large-Scale Steel Truss Structures Using Guided Stochastic Search en_US
dc.type Article en_US
dc.wos.citedbyCount 23
dspace.entity.type Publication
relation.isAuthorOfPublication 623610e1-d19c-417e-8c93-93d5f2a70268
relation.isAuthorOfPublication a5085afb-eacf-4eb1-b19d-be25e73bcd43
relation.isAuthorOfPublication.latestForDiscovery 623610e1-d19c-417e-8c93-93d5f2a70268
relation.isOrgUnitOfPublication 01fb4c5b-b45f-40c0-9a74-f0b3b6265a0d
relation.isOrgUnitOfPublication 238c4130-e9ea-4b1c-9dea-772c4a0dad39
relation.isOrgUnitOfPublication.latestForDiscovery 01fb4c5b-b45f-40c0-9a74-f0b3b6265a0d

Files

Collections