High-dimensional optimization of large-scale steel truss structures using guided stochastic search
dc.authorid | Aminbakhsh, Saman/0000-0002-4389-1910 | |
dc.authorid | Kazemzadeh Azad, Saeid/0000-0001-9309-607X | |
dc.authorscopusid | 57193753354 | |
dc.authorscopusid | 55768552300 | |
dc.authorwosid | Aminbakhsh, Saman/S-6864-2019 | |
dc.contributor.author | Azad, Saeid Kazemzadeh | |
dc.contributor.author | Aminbakhsh, Saman | |
dc.contributor.other | Civil Engineering | |
dc.contributor.other | Department of Civil Engineering | |
dc.date.accessioned | 2024-07-05T15:21:28Z | |
dc.date.available | 2024-07-05T15:21:28Z | |
dc.date.issued | 2021 | |
dc.department | Atılım University | en_US |
dc.department-temp | [Azad, Saeid Kazemzadeh; Aminbakhsh, Saman] Atilim Univ, Dept Civil Engn, Ankara, Turkey | en_US |
dc.description | Aminbakhsh, Saman/0000-0002-4389-1910; Kazemzadeh Azad, Saeid/0000-0001-9309-607X | en_US |
dc.description.abstract | Despite a plethora of truss optimization algorithms devised in the recent literature of structural optimization, still high-dimensional large-scale truss optimization problems have not been properly tackled basically due to the excessive computational effort required to handle the foregoing instances. In this study, application of a recently developed design-driven heuristic, namely guided stochastic search (GSS), is extended to a more challenging class of truss optimization problems having thousands of design variables. Two variants of the algorithm, namely GSSA and GSSB, have been employed for sizing optimization of four high-dimensional examples of steel trusses, i.e., a 2075-member single-layer onion dome, a 2688-member double-layer open dome, a 6000-member doublelayer scallop dome, and a 15048-member double-layer grid as per AISC-LRFD specification. The numerical results obtained indicate the efficiency of GSSA and GSSB in handling high-dimensional instances of large-scale steel trusses with up to 15048 discrete design variables. | en_US |
dc.identifier.citation | 18 | |
dc.identifier.doi | 10.1016/j.istruc.2021.05.035 | |
dc.identifier.endpage | 1456 | en_US |
dc.identifier.issn | 2352-0124 | |
dc.identifier.scopus | 2-s2.0-85107859081 | |
dc.identifier.startpage | 1439 | en_US |
dc.identifier.uri | https://doi.org/10.1016/j.istruc.2021.05.035 | |
dc.identifier.uri | https://hdl.handle.net/20.500.14411/2092 | |
dc.identifier.volume | 33 | en_US |
dc.identifier.wos | WOS:000702824700004 | |
dc.identifier.wosquality | Q2 | |
dc.institutionauthor | Aminbakhsh, Saman | |
dc.institutionauthor | Azad, Saeıd Kazemzadeh | |
dc.language.iso | en | en_US |
dc.publisher | Elsevier Science inc | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Structural optimization | en_US |
dc.subject | Large-scale steel trusses | en_US |
dc.subject | Principle of virtual work | en_US |
dc.subject | Guided stochastic search | en_US |
dc.subject | High-dimensional optimization | en_US |
dc.subject | Integrated force method | en_US |
dc.title | High-dimensional optimization of large-scale steel truss structures using guided stochastic search | en_US |
dc.type | Article | en_US |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | 623610e1-d19c-417e-8c93-93d5f2a70268 | |
relation.isAuthorOfPublication | a5085afb-eacf-4eb1-b19d-be25e73bcd43 | |
relation.isAuthorOfPublication.latestForDiscovery | 623610e1-d19c-417e-8c93-93d5f2a70268 | |
relation.isOrgUnitOfPublication | 01fb4c5b-b45f-40c0-9a74-f0b3b6265a0d | |
relation.isOrgUnitOfPublication | 238c4130-e9ea-4b1c-9dea-772c4a0dad39 | |
relation.isOrgUnitOfPublication.latestForDiscovery | 01fb4c5b-b45f-40c0-9a74-f0b3b6265a0d |