High-dimensional optimization of large-scale steel truss structures using guided stochastic search

dc.authoridAminbakhsh, Saman/0000-0002-4389-1910
dc.authoridKazemzadeh Azad, Saeid/0000-0001-9309-607X
dc.authorscopusid57193753354
dc.authorscopusid55768552300
dc.authorwosidAminbakhsh, Saman/S-6864-2019
dc.contributor.authorAzad, Saeid Kazemzadeh
dc.contributor.authorAminbakhsh, Saman
dc.contributor.otherCivil Engineering
dc.contributor.otherDepartment of Civil Engineering
dc.date.accessioned2024-07-05T15:21:28Z
dc.date.available2024-07-05T15:21:28Z
dc.date.issued2021
dc.departmentAtılım Universityen_US
dc.department-temp[Azad, Saeid Kazemzadeh; Aminbakhsh, Saman] Atilim Univ, Dept Civil Engn, Ankara, Turkeyen_US
dc.descriptionAminbakhsh, Saman/0000-0002-4389-1910; Kazemzadeh Azad, Saeid/0000-0001-9309-607Xen_US
dc.description.abstractDespite a plethora of truss optimization algorithms devised in the recent literature of structural optimization, still high-dimensional large-scale truss optimization problems have not been properly tackled basically due to the excessive computational effort required to handle the foregoing instances. In this study, application of a recently developed design-driven heuristic, namely guided stochastic search (GSS), is extended to a more challenging class of truss optimization problems having thousands of design variables. Two variants of the algorithm, namely GSSA and GSSB, have been employed for sizing optimization of four high-dimensional examples of steel trusses, i.e., a 2075-member single-layer onion dome, a 2688-member double-layer open dome, a 6000-member doublelayer scallop dome, and a 15048-member double-layer grid as per AISC-LRFD specification. The numerical results obtained indicate the efficiency of GSSA and GSSB in handling high-dimensional instances of large-scale steel trusses with up to 15048 discrete design variables.en_US
dc.identifier.citation18
dc.identifier.doi10.1016/j.istruc.2021.05.035
dc.identifier.endpage1456en_US
dc.identifier.issn2352-0124
dc.identifier.scopus2-s2.0-85107859081
dc.identifier.startpage1439en_US
dc.identifier.urihttps://doi.org/10.1016/j.istruc.2021.05.035
dc.identifier.urihttps://hdl.handle.net/20.500.14411/2092
dc.identifier.volume33en_US
dc.identifier.wosWOS:000702824700004
dc.identifier.wosqualityQ2
dc.institutionauthorAminbakhsh, Saman
dc.institutionauthorAzad, Saeıd Kazemzadeh
dc.language.isoenen_US
dc.publisherElsevier Science incen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectStructural optimizationen_US
dc.subjectLarge-scale steel trussesen_US
dc.subjectPrinciple of virtual worken_US
dc.subjectGuided stochastic searchen_US
dc.subjectHigh-dimensional optimizationen_US
dc.subjectIntegrated force methoden_US
dc.titleHigh-dimensional optimization of large-scale steel truss structures using guided stochastic searchen_US
dc.typeArticleen_US
dspace.entity.typePublication
relation.isAuthorOfPublication623610e1-d19c-417e-8c93-93d5f2a70268
relation.isAuthorOfPublicationa5085afb-eacf-4eb1-b19d-be25e73bcd43
relation.isAuthorOfPublication.latestForDiscovery623610e1-d19c-417e-8c93-93d5f2a70268
relation.isOrgUnitOfPublication01fb4c5b-b45f-40c0-9a74-f0b3b6265a0d
relation.isOrgUnitOfPublication238c4130-e9ea-4b1c-9dea-772c4a0dad39
relation.isOrgUnitOfPublication.latestForDiscovery01fb4c5b-b45f-40c0-9a74-f0b3b6265a0d

Files

Collections