Search Results

Now showing 1 - 4 of 4
  • Article
    Comparative Assessment and Performance Analysis of Interference Mitigation Techniques for Co-Existent Non-Geostationary and Geostationary Satellites
    (Wiley, 2024) Ozturk, Faik; Aydin, Elif; Kara, Ali
    In recent years, technological developments with user demands, reduced production, and launch costs have rapidly increased the number of Low Earth Orbit (LEO) satellites in space. Since LEO satellites use the same frequency band as existing Geostationary Earth Orbit (GEO) satellites, the interference coordination between the two satellite networks is vital. In order to minimize the co-existent interference between these satellite networks, studies perform on different interference mitigation strategies. In this paper, analysis and comparative assessment of these interference mitigation techniques are presented for the co-existent Non-Geostationary Earth (NGEO) and GEO systems. More specifically, power control (PC) and spatial isolation-based link adaptation (SILA) techniques are studied comparatively for the performance evaluation. It is shown that the communication link bandwidth is more efficiently utilized in the SILA technique when compared with the PC technique. Moreover, the multi-objective optimization problem (MOP) approach in the SILA technique is demonstrated to be more effective when compared with the single-objective optimization problem (SOP) approach used in the PC technique as the simultaneous prioritizing objective functions outperforms single prioritization. Finally, it is shown that when the PC technique is applied together with the SILA technique, the exclusive angle (EA) can be reduced up to 8% for 100 Mbps, and 8.5% for 200 Mbps transmission bit rates in different operational scenarios. The presented performance evaluation in this paper may help the satellite operator or decision-maker gain insights on which mitigation technique can be used in the case of a co-existent interference. This paper proposes analysis and comparative assessment of interference mitigation techniques for the co-existent Non-Geostationary Earth (NGEO) and Geostationary Earth Orbit (GEO) systems. Spatial isolation-based link adaptation (SILA) and power control (PC) techniques are studied comparatively for the performance evaluation. The obtained optimization results show that the communication link bandwidth is more efficiently utilized in the SILA technique when compared with the PC technique because of the simultaneous prioritizing of objective functions. image
  • Article
    Citation - WoS: 6
    Citation - Scopus: 9
    Comparative Assessment of Electromagnetic Simulation Tools for Use in Microstrip Antenna Design: Experimental Demonstrations
    (Wiley, 2019) Bilgin, Gulsima; Yilmaz, Vadi Su; Kara, Ali; Aydin, Elif
    This paper presents a better understanding of the use of finite integration techniques (FIT) and finite element method (FEM) in different types of microstrip antennas in order to determine which numerical method gives relatively more accurate results. Although the theoretical formulation based on Maxwell's equations of both FEM and FIT are approached from different aspects in the literature, there is still a lack of comparison of the same antenna type using different numerical methods employing FEM and FIT. Therefore, in this study, FEM and FIT were applied to two different types of microstrip antennas, and their simulation and experimental results was compared. For the first antenna demonstration, a multilayer structure was chosen to achieve one of the significant parameters. Then, a microstrip antenna with a compact structure was used in the second demonstration. Using these two antennas, the accuracy of FEM and FIT in different structures were compared and all simulated return loss and gain results were verified by the measured results. The experimental demonstrations show that FEM performs better for both types of microstrip antennas while FIT provides an adequate result for two-layer microstrip antennas.
  • Article
    Citation - WoS: 4
    Citation - Scopus: 5
    Neural Network Based Resonant Frequency Solver for Rectangular-Shaped Shorting Pin-Loaded Antennas
    (Wiley, 2013) Can, Sultan; Kapusuz, Kamil Yavuz; Aydin, Elif
    This study presents an artificial neural network (ANN) estimation of the operating frequencies of shorting pin-loaded rectangular microstrip patch antennas. A feed forward back propagation multilayer perceptron neural network structure is applied in the study. The results are compared with the ones in the literature and the FEM based simulation results. The results of the operating frequencies obtained by using this method are in very good agreement with the experimental results presented in the literature. Several antennas are also simulated by a finite element method based solver and these results are also compared with the results of the proposed neural network model. The average error of the lower frequency obtained by this study has a decrement of 2.025% when compared to the FEM based simulation software and for the upper frequency this difference is 6.835%. The effects of permittivity of the antenna, size of the dimensions of the rectangular patch, and the shorting pin position are also evaluated. In the light of the ANN model and the relations obtained two antennas in the same shape are produced and the results of these antennas are presented as well. (c) 2013 Wiley Periodicals, Inc. Microwave Opt Technol Lett 55:3025-3028, 2013
  • Article
    Citation - WoS: 8
    Citation - Scopus: 8
    A New Rf and Microwave Engineering Course Enriched With Advanced Technologies
    (Wiley, 2012) Aydin, Elif; Cagiltay, Nergiz
    In this study, a curriculum model including recent developments and technologies in the Radio Frequency (RF) and Microwave Engineering field by using a blended approach is proposed. This study covers the description of the content of theoretical and hands on applications, the integration model of the technological tools into the proposed curriculum, and the instructional approaches used in the new course design. The main goal of the course is to prepare students for future professional careers in RF and Microwave Engineering by supporting them with new instructional technologies. The secondary goal of the course is to better prepare the students for the sequence of senior courses in the Electrical and Electronics Engineering program of Atilim University. The course is structured with a balance between theory and laboratory, including remote and in lab measurement experiments as well as modeling and designing microwave components by means of computer tools and design fabrication. The newly designed course is implemented at the Atilim University. The study also reports the first semester implementation. (C) 2010 Wiley Periodicals, Inc. Comput Appl Eng Educ 20: 634645, 2012