NEURAL NETWORK BASED RESONANT FREQUENCY SOLVER FOR RECTANGULAR-SHAPED SHORTING PIN-LOADED ANTENNAS

No Thumbnail Available

Date

2013

Journal Title

Journal ISSN

Volume Title

Publisher

Wiley

Research Projects

Organizational Units

Organizational Unit
Department of Electrical & Electronics Engineering
Department of Electrical and Electronics Engineering (EE) offers solid graduate education and research program. Our Department is known for its student-centered and practice-oriented education. We are devoted to provide an exceptional educational experience to our students and prepare them for the highest personal and professional accomplishments. The advanced teaching and research laboratories are designed to educate the future workforce and meet the challenges of current technologies. The faculty's research activities are high voltage, electrical machinery, power systems, signal and image processing and photonics. Our students have exciting opportunities to participate in our department's research projects as well as in various activities sponsored by TUBİTAK, and other professional societies. European Remote Radio Laboratory project, which provides internet-access to our laboratories, has been accomplished under the leadership of our department with contributions from several European institutions.

Journal Issue

Abstract

This study presents an artificial neural network (ANN) estimation of the operating frequencies of shorting pin-loaded rectangular microstrip patch antennas. A feed forward back propagation multilayer perceptron neural network structure is applied in the study. The results are compared with the ones in the literature and the FEM based simulation results. The results of the operating frequencies obtained by using this method are in very good agreement with the experimental results presented in the literature. Several antennas are also simulated by a finite element method based solver and these results are also compared with the results of the proposed neural network model. The average error of the lower frequency obtained by this study has a decrement of 2.025% when compared to the FEM based simulation software and for the upper frequency this difference is 6.835%. The effects of permittivity of the antenna, size of the dimensions of the rectangular patch, and the shorting pin position are also evaluated. In the light of the ANN model and the relations obtained two antennas in the same shape are produced and the results of these antennas are presented as well. (c) 2013 Wiley Periodicals, Inc. Microwave Opt Technol Lett 55:3025-3028, 2013

Description

Can/0000-0002-9001-0506

Keywords

Artificial neural networks, dual frequency antenna, rectangular microstrip antenna, resonant frequency, shorting pin

Turkish CoHE Thesis Center URL

Citation

4

WoS Q

Q4

Scopus Q

Source

Volume

55

Issue

12

Start Page

3025

End Page

3028

Collections