4 results
Search Results
Now showing 1 - 4 of 4
Article Citation - WoS: 35Citation - Scopus: 43Lyapunov-Type Inequalities for Mixed Non-Linear Forced Differential Equations Within Conformable Derivatives(Springer, 2018) Abdeljawad, Thabet; Agarwal, Ravi P.; Alzabut, Jehad; Jarad, Fahd; Ozbekler, AbdullahWe state and prove new generalized Lyapunov-type and Hartman-type inequalities fora conformable boundary value problem of order alpha is an element of (1,2] with mixed non-linearities of the form ((T alpha X)-X-a)(t) + r(1)(t)vertical bar X(t)vertical bar(eta-1) X(t) + r(2)(t)vertical bar x(t)vertical bar(delta-1) X(t) = g(t), t is an element of (a, b), satisfying the Dirichlet boundary conditions x(a) = x(b) = 0, where r(1), r(2), and g are real-valued integrable functions, and the non-linearities satisfy the conditions 0 < eta < 1 < delta < 2. Moreover, Lyapunov-type and Hartman-type inequalities are obtained when the conformable derivative T-alpha(a) is replaced by a sequential conformable derivative T-alpha(a) circle T-alpha(a), alpha is an element of (1/2,1]. The potential functions r(1), r(2) as well as the forcing term g require no sign restrictions. The obtained inequalities generalize some existing results in the literature.Article Citation - WoS: 4Citation - Scopus: 6On the Oscillation of Even-Order Nonlinear Differential Equations With Mixed Neutral Terms(Hindawi Ltd, 2021) Kaabar, Mohammed K. A.; Özbekler, Abdullah; Grace, Said R.; Alzabut, Jehad; Ozbekler, Abdullah; Siri, Zailan; Özbekler, Abdullah; Mathematics; MathematicsThe oscillation of even-order nonlinear differential equations (NLDiffEqs) with mixed nonlinear neutral terms (MNLNTs) is investigated in this work. New oscillation criteria are obtained which improve, extend, and simplify the existing ones in other previous works. Some examples are also given to illustrate the validity and potentiality of our results.Article Citation - WoS: 10Citation - Scopus: 14On the Oscillation of Non-Linear Fractional Difference Equations With Damping(Mdpi, 2019) Alzabut, Jehad; Muthulakshmi, Velu; Ozbekler, Abdullah; Adigilzel, HakanIn studying the Riccati transformation technique, some mathematical inequalities and comparison results, we establish new oscillation criteria for a non-linear fractional difference equation with damping term. Preliminary details including notations, definitions and essential lemmas on discrete fractional calculus are furnished before proceeding to the main results. The consistency of the proposed results is demonstrated by presenting some numerical examples. We end the paper with a concluding remark.Article Citation - WoS: 1Citation - Scopus: 2Oscillation Results for a Class of Nonlinear Fractional Order Difference Equations with Damping Term(Hindawi Ltd, 2020) Selvam, A. George Maria; Alzabut, Jehad; Jacintha, Mary; Ozbekler, AbdullahThe paper studies the oscillation of a class of nonlinear fractional order difference equations with damping term of the form Delta[psi(lambda)z(eta) (lambda)] + p(lambda)z(eta) (lambda) + q(lambda)F(Sigma(lambda-1+mu)(s=lambda 0) (lambda - s - 1)((-mu)) y(s)) = , where z(lambda) = a(lambda) + b(lambda)Delta(mu) y(lambda), Delta(mu) stands for the fractional difference operator in Riemann-Liouville settings and of order mu, 0 < mu <= 1, and eta >= 1 is a quotient of odd positive integers and lambda is an element of N lambda 0+1-mu. New oscillation results are established by the help of certain inequalities, features of fractional operators, and the generalized Riccati technique. We verify the theoretical outcomes by presenting two numerical examples.

