Lyapunov-type inequalities for mixed non-linear forced differential equations within conformable derivatives
No Thumbnail Available
Date
2018
Journal Title
Journal ISSN
Volume Title
Publisher
Springer
Open Access Color
OpenAIRE Downloads
OpenAIRE Views
Abstract
We state and prove new generalized Lyapunov-type and Hartman-type inequalities fora conformable boundary value problem of order alpha is an element of (1,2] with mixed non-linearities of the form ((T alpha X)-X-a)(t) + r(1)(t)vertical bar X(t)vertical bar(eta-1) X(t) + r(2)(t)vertical bar x(t)vertical bar(delta-1) X(t) = g(t), t is an element of (a, b), satisfying the Dirichlet boundary conditions x(a) = x(b) = 0, where r(1), r(2), and g are real-valued integrable functions, and the non-linearities satisfy the conditions 0 < eta < 1 < delta < 2. Moreover, Lyapunov-type and Hartman-type inequalities are obtained when the conformable derivative T-alpha(a) is replaced by a sequential conformable derivative T-alpha(a) circle T-alpha(a), alpha is an element of (1/2,1]. The potential functions r(1), r(2) as well as the forcing term g require no sign restrictions. The obtained inequalities generalize some existing results in the literature.
Description
Alzabut, Jehad/0000-0002-5262-1138; Abdeljawad, Thabet/0000-0002-8889-3768; Agarwal, Ravi P/0000-0003-0075-1704; Jarad, Fahd/0000-0002-3303-0623
Keywords
Lyapunov inequality, Hartman inequality, Conformable derivative, Green's function, Boundary value problem, Mixed non-linearities
Turkish CoHE Thesis Center URL
Fields of Science
Citation
33
WoS Q
Q1