Lyapunov-Type Inequalities for Mixed Non-Linear Forced Differential Equations Within Conformable Derivatives
| dc.contributor.author | Abdeljawad, Thabet | |
| dc.contributor.author | Agarwal, Ravi P. | |
| dc.contributor.author | Alzabut, Jehad | |
| dc.contributor.author | Jarad, Fahd | |
| dc.contributor.author | Ozbekler, Abdullah | |
| dc.contributor.other | Mathematics | |
| dc.contributor.other | 02. School of Arts and Sciences | |
| dc.contributor.other | 01. Atılım University | |
| dc.date.accessioned | 2024-07-05T15:27:38Z | |
| dc.date.available | 2024-07-05T15:27:38Z | |
| dc.date.issued | 2018 | |
| dc.description | Alzabut, Jehad/0000-0002-5262-1138; Abdeljawad, Thabet/0000-0002-8889-3768; Agarwal, Ravi P/0000-0003-0075-1704; Jarad, Fahd/0000-0002-3303-0623 | en_US |
| dc.description.abstract | We state and prove new generalized Lyapunov-type and Hartman-type inequalities fora conformable boundary value problem of order alpha is an element of (1,2] with mixed non-linearities of the form ((T alpha X)-X-a)(t) + r(1)(t)vertical bar X(t)vertical bar(eta-1) X(t) + r(2)(t)vertical bar x(t)vertical bar(delta-1) X(t) = g(t), t is an element of (a, b), satisfying the Dirichlet boundary conditions x(a) = x(b) = 0, where r(1), r(2), and g are real-valued integrable functions, and the non-linearities satisfy the conditions 0 < eta < 1 < delta < 2. Moreover, Lyapunov-type and Hartman-type inequalities are obtained when the conformable derivative T-alpha(a) is replaced by a sequential conformable derivative T-alpha(a) circle T-alpha(a), alpha is an element of (1/2,1]. The potential functions r(1), r(2) as well as the forcing term g require no sign restrictions. The obtained inequalities generalize some existing results in the literature. | en_US |
| dc.description.sponsorship | Prince Sultan University [RG-DES-2017-01-17] | en_US |
| dc.description.sponsorship | The first and the third authors would like to thank Prince Sultan University for funding this work through research group Nonlinear Analysis Methods in Applied Mathematics (NAMAM), group number RG-DES-2017-01-17. | en_US |
| dc.identifier.doi | 10.1186/s13660-018-1731-x | |
| dc.identifier.issn | 1029-242X | |
| dc.identifier.scopus | 2-s2.0-85048879028 | |
| dc.identifier.uri | https://doi.org/10.1186/s13660-018-1731-x | |
| dc.identifier.uri | https://hdl.handle.net/20.500.14411/2703 | |
| dc.language.iso | en | en_US |
| dc.publisher | Springer | en_US |
| dc.relation.ispartof | Journal of Inequalities and Applications | |
| dc.rights | info:eu-repo/semantics/openAccess | en_US |
| dc.subject | Lyapunov inequality | en_US |
| dc.subject | Hartman inequality | en_US |
| dc.subject | Conformable derivative | en_US |
| dc.subject | Green's function | en_US |
| dc.subject | Boundary value problem | en_US |
| dc.subject | Mixed non-linearities | en_US |
| dc.title | Lyapunov-Type Inequalities for Mixed Non-Linear Forced Differential Equations Within Conformable Derivatives | en_US |
| dc.type | Article | en_US |
| dspace.entity.type | Publication | |
| gdc.author.id | Alzabut, Jehad/0000-0002-5262-1138 | |
| gdc.author.id | Abdeljawad, Thabet/0000-0002-8889-3768 | |
| gdc.author.id | Agarwal, Ravi P/0000-0003-0075-1704 | |
| gdc.author.id | Jarad, Fahd/0000-0002-3303-0623 | |
| gdc.author.institutional | Özbekler, Abdullah | |
| gdc.author.scopusid | 6508051762 | |
| gdc.author.scopusid | 36013313700 | |
| gdc.author.scopusid | 13105947900 | |
| gdc.author.scopusid | 15622742900 | |
| gdc.author.scopusid | 9434099700 | |
| gdc.author.wosid | Alzabut, Jehad/T-8075-2018 | |
| gdc.author.wosid | Jarad, Fahd/T-8333-2018 | |
| gdc.author.wosid | Abdeljawad, Thabet/T-8298-2018 | |
| gdc.bip.impulseclass | C4 | |
| gdc.bip.influenceclass | C4 | |
| gdc.bip.popularityclass | C4 | |
| gdc.coar.access | open access | |
| gdc.coar.type | text::journal::journal article | |
| gdc.description.department | Atılım University | en_US |
| gdc.description.departmenttemp | [Abdeljawad, Thabet; Alzabut, Jehad] Prince Sultan Univ, Dept Math & Gen Sci, Riyadh, Saudi Arabia; [Agarwal, Ravi P.] Texas A&M Univ Kingsville, Dept Math, Kingsville, TX USA; [Jarad, Fahd] Cankaya Univ, Dept Math, Ankara, Turkey; [Ozbekler, Abdullah] Atilim Univ, Dept Math, Ankara, Turkey | en_US |
| gdc.description.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
| gdc.description.volume | 2018 | |
| gdc.description.wosquality | Q1 | |
| gdc.identifier.openalex | W2809552774 | |
| gdc.identifier.pmid | 30137730 | |
| gdc.identifier.wos | WOS:000436019600005 | |
| gdc.oaire.accesstype | GOLD | |
| gdc.oaire.diamondjournal | false | |
| gdc.oaire.impulse | 28.0 | |
| gdc.oaire.influence | 5.052444E-9 | |
| gdc.oaire.isgreen | true | |
| gdc.oaire.keywords | Conformable matrix | |
| gdc.oaire.keywords | Green’s function | |
| gdc.oaire.keywords | Integro-Differential Equations | |
| gdc.oaire.keywords | Theory and Applications of Fractional Differential Equations | |
| gdc.oaire.keywords | Mathematical analysis | |
| gdc.oaire.keywords | Quantum mechanics | |
| gdc.oaire.keywords | Conformable derivative | |
| gdc.oaire.keywords | QA1-939 | |
| gdc.oaire.keywords | FOS: Mathematics | |
| gdc.oaire.keywords | Lyapunov inequality | |
| gdc.oaire.keywords | Boundary value problem | |
| gdc.oaire.keywords | Biology | |
| gdc.oaire.keywords | Anomalous Diffusion Modeling and Analysis | |
| gdc.oaire.keywords | Lyapunov function | |
| gdc.oaire.keywords | Ecology | |
| gdc.oaire.keywords | Research | |
| gdc.oaire.keywords | Applied Mathematics | |
| gdc.oaire.keywords | Physics | |
| gdc.oaire.keywords | Hartman inequality | |
| gdc.oaire.keywords | Pure mathematics | |
| gdc.oaire.keywords | Applied mathematics | |
| gdc.oaire.keywords | Nonlocal Partial Differential Equations and Boundary Value Problems | |
| gdc.oaire.keywords | Boundary Value Problems | |
| gdc.oaire.keywords | Inequality | |
| gdc.oaire.keywords | Modeling and Simulation | |
| gdc.oaire.keywords | FOS: Biological sciences | |
| gdc.oaire.keywords | Physical Sciences | |
| gdc.oaire.keywords | Nonlinear system | |
| gdc.oaire.keywords | Mixed non-linearities | |
| gdc.oaire.keywords | Type (biology) | |
| gdc.oaire.keywords | Mathematics | |
| gdc.oaire.popularity | 8.615102E-9 | |
| gdc.oaire.publicfunded | false | |
| gdc.oaire.sciencefields | 01 natural sciences | |
| gdc.oaire.sciencefields | 0101 mathematics | |
| gdc.openalex.fwci | 8.963 | |
| gdc.openalex.normalizedpercentile | 1.0 | |
| gdc.openalex.toppercent | TOP 1% | |
| gdc.opencitations.count | 29 | |
| gdc.plumx.crossrefcites | 12 | |
| gdc.plumx.mendeley | 3 | |
| gdc.plumx.pubmedcites | 1 | |
| gdc.plumx.scopuscites | 42 | |
| gdc.scopus.citedcount | 42 | |
| gdc.wos.citedcount | 34 | |
| relation.isAuthorOfPublication | ae65c9f5-e938-41ab-b335-fed50015a138 | |
| relation.isAuthorOfPublication.latestForDiscovery | ae65c9f5-e938-41ab-b335-fed50015a138 | |
| relation.isOrgUnitOfPublication | 31ddeb89-24da-4427-917a-250e710b969c | |
| relation.isOrgUnitOfPublication | 9fc70983-6166-4c9a-8abd-5b6045f7579d | |
| relation.isOrgUnitOfPublication | 50be38c5-40c4-4d5f-b8e6-463e9514c6dd | |
| relation.isOrgUnitOfPublication.latestForDiscovery | 31ddeb89-24da-4427-917a-250e710b969c |