Lyapunov-Type Inequalities for Mixed Non-Linear Forced Differential Equations Within Conformable Derivatives

dc.authorid Alzabut, Jehad/0000-0002-5262-1138
dc.authorid Abdeljawad, Thabet/0000-0002-8889-3768
dc.authorid Agarwal, Ravi P/0000-0003-0075-1704
dc.authorid Jarad, Fahd/0000-0002-3303-0623
dc.authorscopusid 6508051762
dc.authorscopusid 36013313700
dc.authorscopusid 13105947900
dc.authorscopusid 15622742900
dc.authorscopusid 9434099700
dc.authorwosid Alzabut, Jehad/T-8075-2018
dc.authorwosid Jarad, Fahd/T-8333-2018
dc.authorwosid Abdeljawad, Thabet/T-8298-2018
dc.contributor.author Abdeljawad, Thabet
dc.contributor.author Agarwal, Ravi P.
dc.contributor.author Alzabut, Jehad
dc.contributor.author Jarad, Fahd
dc.contributor.author Ozbekler, Abdullah
dc.contributor.other Mathematics
dc.date.accessioned 2024-07-05T15:27:38Z
dc.date.available 2024-07-05T15:27:38Z
dc.date.issued 2018
dc.department Atılım University en_US
dc.department-temp [Abdeljawad, Thabet; Alzabut, Jehad] Prince Sultan Univ, Dept Math & Gen Sci, Riyadh, Saudi Arabia; [Agarwal, Ravi P.] Texas A&M Univ Kingsville, Dept Math, Kingsville, TX USA; [Jarad, Fahd] Cankaya Univ, Dept Math, Ankara, Turkey; [Ozbekler, Abdullah] Atilim Univ, Dept Math, Ankara, Turkey en_US
dc.description Alzabut, Jehad/0000-0002-5262-1138; Abdeljawad, Thabet/0000-0002-8889-3768; Agarwal, Ravi P/0000-0003-0075-1704; Jarad, Fahd/0000-0002-3303-0623 en_US
dc.description.abstract We state and prove new generalized Lyapunov-type and Hartman-type inequalities fora conformable boundary value problem of order alpha is an element of (1,2] with mixed non-linearities of the form ((T alpha X)-X-a)(t) + r(1)(t)vertical bar X(t)vertical bar(eta-1) X(t) + r(2)(t)vertical bar x(t)vertical bar(delta-1) X(t) = g(t), t is an element of (a, b), satisfying the Dirichlet boundary conditions x(a) = x(b) = 0, where r(1), r(2), and g are real-valued integrable functions, and the non-linearities satisfy the conditions 0 < eta < 1 < delta < 2. Moreover, Lyapunov-type and Hartman-type inequalities are obtained when the conformable derivative T-alpha(a) is replaced by a sequential conformable derivative T-alpha(a) circle T-alpha(a), alpha is an element of (1/2,1]. The potential functions r(1), r(2) as well as the forcing term g require no sign restrictions. The obtained inequalities generalize some existing results in the literature. en_US
dc.description.sponsorship Prince Sultan University [RG-DES-2017-01-17] en_US
dc.description.sponsorship The first and the third authors would like to thank Prince Sultan University for funding this work through research group Nonlinear Analysis Methods in Applied Mathematics (NAMAM), group number RG-DES-2017-01-17. en_US
dc.identifier.citationcount 33
dc.identifier.doi 10.1186/s13660-018-1731-x
dc.identifier.issn 1029-242X
dc.identifier.pmid 30137730
dc.identifier.scopus 2-s2.0-85048879028
dc.identifier.uri https://doi.org/10.1186/s13660-018-1731-x
dc.identifier.uri https://hdl.handle.net/20.500.14411/2703
dc.identifier.wos WOS:000436019600005
dc.identifier.wosquality Q1
dc.institutionauthor Özbekler, Abdullah
dc.language.iso en en_US
dc.publisher Springer en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.scopus.citedbyCount 41
dc.subject Lyapunov inequality en_US
dc.subject Hartman inequality en_US
dc.subject Conformable derivative en_US
dc.subject Green's function en_US
dc.subject Boundary value problem en_US
dc.subject Mixed non-linearities en_US
dc.title Lyapunov-Type Inequalities for Mixed Non-Linear Forced Differential Equations Within Conformable Derivatives en_US
dc.type Article en_US
dc.wos.citedbyCount 33
dspace.entity.type Publication
relation.isAuthorOfPublication ae65c9f5-e938-41ab-b335-fed50015a138
relation.isAuthorOfPublication.latestForDiscovery ae65c9f5-e938-41ab-b335-fed50015a138
relation.isOrgUnitOfPublication 31ddeb89-24da-4427-917a-250e710b969c
relation.isOrgUnitOfPublication.latestForDiscovery 31ddeb89-24da-4427-917a-250e710b969c

Files

Collections