Lyapunov-type inequalities for mixed non-linear forced differential equations within conformable derivatives

dc.authoridAlzabut, Jehad/0000-0002-5262-1138
dc.authoridAbdeljawad, Thabet/0000-0002-8889-3768
dc.authoridAgarwal, Ravi P/0000-0003-0075-1704
dc.authoridJarad, Fahd/0000-0002-3303-0623
dc.authorscopusid6508051762
dc.authorscopusid36013313700
dc.authorscopusid13105947900
dc.authorscopusid15622742900
dc.authorscopusid9434099700
dc.authorwosidAlzabut, Jehad/T-8075-2018
dc.authorwosidJarad, Fahd/T-8333-2018
dc.authorwosidAbdeljawad, Thabet/T-8298-2018
dc.contributor.authorAbdeljawad, Thabet
dc.contributor.authorAgarwal, Ravi P.
dc.contributor.authorAlzabut, Jehad
dc.contributor.authorJarad, Fahd
dc.contributor.authorOzbekler, Abdullah
dc.contributor.otherMathematics
dc.date.accessioned2024-07-05T15:27:38Z
dc.date.available2024-07-05T15:27:38Z
dc.date.issued2018
dc.departmentAtılım Universityen_US
dc.department-temp[Abdeljawad, Thabet; Alzabut, Jehad] Prince Sultan Univ, Dept Math & Gen Sci, Riyadh, Saudi Arabia; [Agarwal, Ravi P.] Texas A&M Univ Kingsville, Dept Math, Kingsville, TX USA; [Jarad, Fahd] Cankaya Univ, Dept Math, Ankara, Turkey; [Ozbekler, Abdullah] Atilim Univ, Dept Math, Ankara, Turkeyen_US
dc.descriptionAlzabut, Jehad/0000-0002-5262-1138; Abdeljawad, Thabet/0000-0002-8889-3768; Agarwal, Ravi P/0000-0003-0075-1704; Jarad, Fahd/0000-0002-3303-0623en_US
dc.description.abstractWe state and prove new generalized Lyapunov-type and Hartman-type inequalities fora conformable boundary value problem of order alpha is an element of (1,2] with mixed non-linearities of the form ((T alpha X)-X-a)(t) + r(1)(t)vertical bar X(t)vertical bar(eta-1) X(t) + r(2)(t)vertical bar x(t)vertical bar(delta-1) X(t) = g(t), t is an element of (a, b), satisfying the Dirichlet boundary conditions x(a) = x(b) = 0, where r(1), r(2), and g are real-valued integrable functions, and the non-linearities satisfy the conditions 0 < eta < 1 < delta < 2. Moreover, Lyapunov-type and Hartman-type inequalities are obtained when the conformable derivative T-alpha(a) is replaced by a sequential conformable derivative T-alpha(a) circle T-alpha(a), alpha is an element of (1/2,1]. The potential functions r(1), r(2) as well as the forcing term g require no sign restrictions. The obtained inequalities generalize some existing results in the literature.en_US
dc.description.sponsorshipPrince Sultan University [RG-DES-2017-01-17]en_US
dc.description.sponsorshipThe first and the third authors would like to thank Prince Sultan University for funding this work through research group Nonlinear Analysis Methods in Applied Mathematics (NAMAM), group number RG-DES-2017-01-17.en_US
dc.identifier.citation33
dc.identifier.doi10.1186/s13660-018-1731-x
dc.identifier.issn1029-242X
dc.identifier.pmid30137730
dc.identifier.scopus2-s2.0-85048879028
dc.identifier.urihttps://doi.org/10.1186/s13660-018-1731-x
dc.identifier.urihttps://hdl.handle.net/20.500.14411/2703
dc.identifier.wosWOS:000436019600005
dc.identifier.wosqualityQ1
dc.institutionauthorÖzbekler, Abdullah
dc.language.isoenen_US
dc.publisherSpringeren_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectLyapunov inequalityen_US
dc.subjectHartman inequalityen_US
dc.subjectConformable derivativeen_US
dc.subjectGreen's functionen_US
dc.subjectBoundary value problemen_US
dc.subjectMixed non-linearitiesen_US
dc.titleLyapunov-type inequalities for mixed non-linear forced differential equations within conformable derivativesen_US
dc.typeArticleen_US
dspace.entity.typePublication
relation.isAuthorOfPublicationae65c9f5-e938-41ab-b335-fed50015a138
relation.isAuthorOfPublication.latestForDiscoveryae65c9f5-e938-41ab-b335-fed50015a138
relation.isOrgUnitOfPublication31ddeb89-24da-4427-917a-250e710b969c
relation.isOrgUnitOfPublication.latestForDiscovery31ddeb89-24da-4427-917a-250e710b969c

Files

Collections