Lyapunov-Type Inequalities for Mixed Non-Linear Forced Differential Equations Within Conformable Derivatives

dc.contributor.author Abdeljawad, Thabet
dc.contributor.author Agarwal, Ravi P.
dc.contributor.author Alzabut, Jehad
dc.contributor.author Jarad, Fahd
dc.contributor.author Ozbekler, Abdullah
dc.contributor.other Mathematics
dc.contributor.other 02. School of Arts and Sciences
dc.contributor.other 01. Atılım University
dc.date.accessioned 2024-07-05T15:27:38Z
dc.date.available 2024-07-05T15:27:38Z
dc.date.issued 2018
dc.description Alzabut, Jehad/0000-0002-5262-1138; Abdeljawad, Thabet/0000-0002-8889-3768; Agarwal, Ravi P/0000-0003-0075-1704; Jarad, Fahd/0000-0002-3303-0623 en_US
dc.description.abstract We state and prove new generalized Lyapunov-type and Hartman-type inequalities fora conformable boundary value problem of order alpha is an element of (1,2] with mixed non-linearities of the form ((T alpha X)-X-a)(t) + r(1)(t)vertical bar X(t)vertical bar(eta-1) X(t) + r(2)(t)vertical bar x(t)vertical bar(delta-1) X(t) = g(t), t is an element of (a, b), satisfying the Dirichlet boundary conditions x(a) = x(b) = 0, where r(1), r(2), and g are real-valued integrable functions, and the non-linearities satisfy the conditions 0 < eta < 1 < delta < 2. Moreover, Lyapunov-type and Hartman-type inequalities are obtained when the conformable derivative T-alpha(a) is replaced by a sequential conformable derivative T-alpha(a) circle T-alpha(a), alpha is an element of (1/2,1]. The potential functions r(1), r(2) as well as the forcing term g require no sign restrictions. The obtained inequalities generalize some existing results in the literature. en_US
dc.description.sponsorship Prince Sultan University [RG-DES-2017-01-17] en_US
dc.description.sponsorship The first and the third authors would like to thank Prince Sultan University for funding this work through research group Nonlinear Analysis Methods in Applied Mathematics (NAMAM), group number RG-DES-2017-01-17. en_US
dc.identifier.doi 10.1186/s13660-018-1731-x
dc.identifier.issn 1029-242X
dc.identifier.scopus 2-s2.0-85048879028
dc.identifier.uri https://doi.org/10.1186/s13660-018-1731-x
dc.identifier.uri https://hdl.handle.net/20.500.14411/2703
dc.language.iso en en_US
dc.publisher Springer en_US
dc.relation.ispartof Journal of Inequalities and Applications
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject Lyapunov inequality en_US
dc.subject Hartman inequality en_US
dc.subject Conformable derivative en_US
dc.subject Green's function en_US
dc.subject Boundary value problem en_US
dc.subject Mixed non-linearities en_US
dc.title Lyapunov-Type Inequalities for Mixed Non-Linear Forced Differential Equations Within Conformable Derivatives en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.id Alzabut, Jehad/0000-0002-5262-1138
gdc.author.id Abdeljawad, Thabet/0000-0002-8889-3768
gdc.author.id Agarwal, Ravi P/0000-0003-0075-1704
gdc.author.id Jarad, Fahd/0000-0002-3303-0623
gdc.author.institutional Özbekler, Abdullah
gdc.author.scopusid 6508051762
gdc.author.scopusid 36013313700
gdc.author.scopusid 13105947900
gdc.author.scopusid 15622742900
gdc.author.scopusid 9434099700
gdc.author.wosid Alzabut, Jehad/T-8075-2018
gdc.author.wosid Jarad, Fahd/T-8333-2018
gdc.author.wosid Abdeljawad, Thabet/T-8298-2018
gdc.bip.impulseclass C4
gdc.bip.influenceclass C4
gdc.bip.popularityclass C4
gdc.coar.access open access
gdc.coar.type text::journal::journal article
gdc.description.department Atılım University en_US
gdc.description.departmenttemp [Abdeljawad, Thabet; Alzabut, Jehad] Prince Sultan Univ, Dept Math & Gen Sci, Riyadh, Saudi Arabia; [Agarwal, Ravi P.] Texas A&M Univ Kingsville, Dept Math, Kingsville, TX USA; [Jarad, Fahd] Cankaya Univ, Dept Math, Ankara, Turkey; [Ozbekler, Abdullah] Atilim Univ, Dept Math, Ankara, Turkey en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.volume 2018
gdc.description.wosquality Q1
gdc.identifier.openalex W2809552774
gdc.identifier.pmid 30137730
gdc.identifier.wos WOS:000436019600005
gdc.oaire.accesstype GOLD
gdc.oaire.diamondjournal false
gdc.oaire.impulse 28.0
gdc.oaire.influence 5.052444E-9
gdc.oaire.isgreen true
gdc.oaire.keywords Conformable matrix
gdc.oaire.keywords Green’s function
gdc.oaire.keywords Integro-Differential Equations
gdc.oaire.keywords Theory and Applications of Fractional Differential Equations
gdc.oaire.keywords Mathematical analysis
gdc.oaire.keywords Quantum mechanics
gdc.oaire.keywords Conformable derivative
gdc.oaire.keywords QA1-939
gdc.oaire.keywords FOS: Mathematics
gdc.oaire.keywords Lyapunov inequality
gdc.oaire.keywords Boundary value problem
gdc.oaire.keywords Biology
gdc.oaire.keywords Anomalous Diffusion Modeling and Analysis
gdc.oaire.keywords Lyapunov function
gdc.oaire.keywords Ecology
gdc.oaire.keywords Research
gdc.oaire.keywords Applied Mathematics
gdc.oaire.keywords Physics
gdc.oaire.keywords Hartman inequality
gdc.oaire.keywords Pure mathematics
gdc.oaire.keywords Applied mathematics
gdc.oaire.keywords Nonlocal Partial Differential Equations and Boundary Value Problems
gdc.oaire.keywords Boundary Value Problems
gdc.oaire.keywords Inequality
gdc.oaire.keywords Modeling and Simulation
gdc.oaire.keywords FOS: Biological sciences
gdc.oaire.keywords Physical Sciences
gdc.oaire.keywords Nonlinear system
gdc.oaire.keywords Mixed non-linearities
gdc.oaire.keywords Type (biology)
gdc.oaire.keywords Mathematics
gdc.oaire.popularity 8.615102E-9
gdc.oaire.publicfunded false
gdc.oaire.sciencefields 01 natural sciences
gdc.oaire.sciencefields 0101 mathematics
gdc.openalex.fwci 8.963
gdc.openalex.normalizedpercentile 1.0
gdc.openalex.toppercent TOP 1%
gdc.opencitations.count 29
gdc.plumx.crossrefcites 12
gdc.plumx.mendeley 3
gdc.plumx.pubmedcites 1
gdc.plumx.scopuscites 42
gdc.scopus.citedcount 42
gdc.wos.citedcount 34
relation.isAuthorOfPublication ae65c9f5-e938-41ab-b335-fed50015a138
relation.isAuthorOfPublication.latestForDiscovery ae65c9f5-e938-41ab-b335-fed50015a138
relation.isOrgUnitOfPublication 31ddeb89-24da-4427-917a-250e710b969c
relation.isOrgUnitOfPublication 9fc70983-6166-4c9a-8abd-5b6045f7579d
relation.isOrgUnitOfPublication 50be38c5-40c4-4d5f-b8e6-463e9514c6dd
relation.isOrgUnitOfPublication.latestForDiscovery 31ddeb89-24da-4427-917a-250e710b969c

Files

Collections