Search Results

Now showing 1 - 6 of 6
  • Article
    Citation - WoS: 8
    Citation - Scopus: 8
    Effect of Lithium Nanosandwiching on the Structural, Optical and Dielectric Performance of Moo3
    (Elsevier, 2019) Al Garni, S. E.; Qasrawi, A. F.
    In this article, we discuss the effects of lithium nanosheets on the structural, optical, dielectric and optical conductivity parameters of the MoO3 films. The nanosandwiching of Li layers between two layers of MoO3 of thicknesses larger than 20 nm induced the crystallization process of the amorphous MoO3. Namely, MoO3 thin films that are nanosandwiched with Li sheets of thicknesses larger than 50 nm, exhibit structural phase transitions from hexagonal to monoclinic and reveals larger crystallite sizes. The possible formation of Li2O at the MoO3/Li/MoO3 interfaces is simulated and discussed. Optically, the Li nanosandwiching is observed to enhance the light absorbability by 11.0 times at 2.0 eV and successfully engineered the energy bands gap in the range of 3.05-0.45 eV. It also enhances the dielectric performance. In addition, relatively thick layers of lithium (200 nm) succeeds in converting the conductivity type from n-to p-type. The modeling of the dielectric spectra in accordance with the Drude- Lorentz approach have shown that the presence of Li in the structure of MoO(3 )significantly increases the drift mobility values of electrons from 5.86 to 11.40 cm(2)/V. The plasmon frequency range for this system varies in the frequency domain of 0.32-5.94 GHz. The features of MoO3/Li/MoO3 interfaces make them attractive for thin film transistor technology as optical receivers being promising for use in optical communications.
  • Article
    Citation - WoS: 10
    Citation - Scopus: 10
    Fabrication and Characterization of Yb/Moo3< Devices
    (Elsevier Science Bv, 2019) Al Garni, S. E.; Qasrawi, A. F.
    In this study we have explored some of the properties of Yb/MoO3/(C, Yb) thin films as a multifunctional optoelectronic device. While the MoO3 films which are deposited onto glass substrate are found to be of amorphous nature, the Yb metal induced the growth of orthorhombic phase of MoO3. The films are high transparent and exhibit energy band gap value of 3.0 eV which make it sensitive to light signals in the near ultraviolet range of light. In addition, the frequency dependent capacitance-voltage characteristics of Yb/MoO3/(C,Yb) structure display pronounced accumulation, depletion and inversion regions that nominate it for use as tunable metal-oxide-semiconductor MOS device. The physical parameters including the built in voltage, barrier height, flat band and threshold voltages of the MOS capacitors are also determined. Furthermore, the current-voltage characteristics displayed high rectification ratio that could reach 1.26 x 10(4) at biasing voltage of 0.5 V nominating the Yb/MoO3/C device for use as electronic switches. On the other hand, the impedance spectroscopy analysis in the frequency domain of 0.01-1.80 GHz, have shown that the Yb/MoO3/Yb structures are more appropriate for microwave applications than Yb/MoO3/C device. The microwave cutoff frequency for the Yb sandwiched MoO3 exceeds 140 GHz. The return loss for the Yb/MoO3/Yb reaches 26 dB at 1.8 GHz. These values are attractive as they suit microwave low/high pass band fillers.
  • Article
    Citation - Scopus: 1
    Structural and Electrical Performance of Moo3 Films Designed as Microwave Resonators
    (inst Materials Physics, 2020) Al Garni, S. E.; Qasrawi, A. F.; Alharbi, S. R.; Department of Electrical & Electronics Engineering
    In this work, the effect of the insertion of lithium slabs of thicknesses of 50 nm between stacked layers of MoO3 is considered. Stacked layers of MoO3 comprising lithium slabs are prepared by the thermal evaporation technique onto Au substrates under vacuum pressure of 10(-5) mbar. The effects of Li slabs are explored by the X-ray diffraction, scanning electron microscopy, current-voltage characteristics and impedance spectroscopy techniques in the frequency domain of 0.01-1.80 GHz. While the presence of Li slabs did not alter the amorphous nature of structure, it forced the growth of rod-like grains of diameters of 100-160 nm and lengths of 1.5 mu m. Electrically, the presence of Li in the samples enhanced the rectifying properties of the devices and force reverse to forward current ratios larger than 60 times. Li slabs also controlled the negative capacitance effect and resonance -antiresonance regions in the Au/MoO3/MoO3/C stacked layers. While the Au/MoO3/MoO3/C devices displayed high conductance and low impedance values in the studied frequency domain, the Au/MoO3/Li/MOO3/C devices exhibited low conductance and high impedance mode in the frequency domain of 0.01-0.59 GHz. It is also found that the presence of Li slabs improved the performance of the devices through driving it to exhibit lower reflection coefficient and high return loss values near 0.80 GHz. The features of the devices nominate them for use as RF-Microwave traps or resonators.
  • Article
    Citation - WoS: 21
    Citation - Scopus: 21
    Design and Characterization of Moo3 Heterojunctions
    (Elsevier Science Bv, 2019) Al Garni, S. E.; Qasrawi, A. F.
    In this work, the morphological, compositional, structural, optical and dielectric properties of CdSe which are deposited onto glass and onto MoO3 thin film substrates are investigated. The use of MoO3 as substrate for the growth of CdSe is observed to increase the lattice parameters of the hexagonal unit cell of CdSe and decreases the values of grain size and strain. It also forms band tails of width of 0.20 eV in the band gap of CdSe. The optical analysis has shown that the MoO3/CdSe interfacing results in blue shift in the energy band gap of CdSe and also result in large conduction and valence band of sets of values of 2.12 and 0.94 eV, respectively. The dielectric spectral analysis with the help of Prude-Lorentz approaches for optical conduction, revealed an enhancement in the drift mobility of charge carriers from 15.69 to 39.30 cm(2)/V as a response to the incident electromagnetic field. The free carrier density of the MoO3/CdSe being of the order of 10(17) cm(-3) with the large valence and conduction band offsets and the sufficiently large drift mobility nominates the MoO3/CdSe heterojunctions as an effective component of optoelectronic technology including thin film transistors.
  • Article
    Citation - WoS: 10
    Citation - Scopus: 9
    Tunable Au/Ga2< Varactor Diodes Designed for High Frequency Applications
    (Natl inst R&d Materials Physics, 2017) Al Garni, S. E.; Qasrawi, A. F.; Department of Electrical & Electronics Engineering
    In this work, the design and characterization of Au/Ga2S3/Yb Schottky barrier is investigated by means of transmittance electron microscopy (TEM), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDXS), capacitance spectroscopy, capacitance (C)-voltage (V) characteristics and impedance spectroscopy techniques. The design of the energy band diagram of the amorphous Au/Ga2S3 interface revealed a theoretical energy barrier height (q phi(b)) and built in voltage (qV(bi)) of 2.04 and 1.88 eV, respectively. Experimentally, the qV(bi) was observed to be sensitive to the applied signal frequency. In addition, the capacitance spectra which were studied in the range of 10-1800 MHz, revealed resonance and antiresonance biasing dependent signal oscillations associated with negative capacitance values. On the other hand, impedance spectroscopy analysis revealed band pass/reject filtering properties in all the studied frequency range. The device exhibited a return loss, voltage standing wave ratio and power efficiency of 16.7 dB, 1.3 and 98.3% at 1400 MHz, respectively.
  • Article
    Citation - WoS: 5
    Citation - Scopus: 5
    Formation and Negative Capacitance Effect in Au/Bi2< Heterojunctions Designed as Microwave Resonators
    (Natl inst R&d Materials Physics, 2018) Al Garni, S. E.; Qasrawi, A. F.; Department of Electrical & Electronics Engineering
    In this article, the physical design, energy band diagram, temperature dependent electrical resistivity and the impedance spectroscopy measurements of the Au/Bi2O3/ZnS/Ag isotype heterojunction devices are reported. The devices are prepared by the thermal evaporation technique under vacuum pressure of 10(-5) mbar. Structural, compositional and morphological studies has shown the presence of an expansion in the lattice of Bi2O3 associated with increased strain and dislocation density and decreased grain size as a result of ZnS interfacing. The design of the band diagram indicated that the formed heterojunction exhibit large valence and conduction band offsets that forces charge accumulation at the interface. The Au/Bi2O3/ZnS/Ag device displays negative capacitance (NC) effect in the frequency domain of 0.01-1.50 GHz. The NC effect is interrupted by a resonance-antiresonance phenomenon in the frequency domain of 0.90-1.07 GHz. In addition to the NC effects, the device under study exhibited reflection coefficient and return loss spectra that nominate it for use as microwave cavities or as low pass band filters.