3 results
Search Results
Now showing 1 - 3 of 3
Article Citation - WoS: 11Citation - Scopus: 12Effect of Au Nanosandwiching on the Structural, Optical and Dielectric Properties of the as Grown and Annealed Inse Thin Films(Elsevier Science Bv, 2017) Omareya, Olfat A.; Qasrawi, A. F.; Al Garni, S. E.In the current work, the structural, optical and dielectric properties of the InSe/Au/InSe nanosandwiched structures are investigated by means of X-ray diffraction and UV-visible light spectrophotometry techniques. The insertion of a 20 and 100 nm thick Au metal slabs between two InSe layers did not alter the amorphous nature of the as grown InSe films but decreased the energy band gap and the free carrier density. It also increased; the absorption ratio and the values of dielectric constant by similar to 3 times. The insertion of 100 nm Au layers as a nanosandwich enhanced the drift mobility (31.3 cm(2)/V s) and plasmon frequency (1.53 GHz) of the InSe films. On the other hand, upon annealing, a metal induced crystallization process is observed for the InSe/Au (100 nm)/InSe sandwiches. Particularly, while the samples sandwiched with a layer of 20 nm thickness hardly revealed hexagonal gamma -In2Se3 when annealed at 300 degrees C, those sandwiched with 100 nm Au slab, displayed well crystalline phase of hexagonal gamma -In2Se3 at annealing temperature of 200 degrees C. The further annealing at 300 degrees C, forced the appearing of the orthorhombic In4Se3 phase. Optically, the annealing of the InSe/Au(100 nm)/InSe at 200 degrees C improved the absorption ratio by similar to 9 times and decreased the energy band gap. The nanosandwiching technique of InSe seems to be promising for the engineering of the optical properties of the InSe photovoltaic material.Article Citation - WoS: 9Citation - Scopus: 10Growth and Characterization of Inse/Ge Interfaces(Elsevier Gmbh, Urban & Fischer verlag, 2017) Al Garni, S. E.; Omareye, Olfat A.; Qasrawi, A. F.In the current study, we report the effect of insertion of a 200 nm thick Ge film between two layers of InSe. The Ge sandwiched InSe films are studied by means of X-ray diffraction technique, energy dispersion X-ray spectroscopy attached to a scanning electron microscope, optical spectrophotometry and light power dependent photoconductivity. It was observed that, The InSe prefers the growth of InSe monophase when deposited onto glass and the growth of gamma-In2Se3 when deposited onto InSe/Ge substrate. The three layers interface (InSe/Ge/gamma-In2Se3) exhibits a Ge induced crystallization process at annealing temperature of 200 degrees C. The optical analysis has shown that the InSe films exhibit a redshift upon Ge sandwiching. In addition, the conduction and valence bands offsets at the first interface (InSe/Ge) and at the second (Ge/gamma-In2Se3) interface are found to be 0.55 eV and 1.0 eV, and 0.40eVand 1.38 eV, respectively. Moreover, the photocurrent of the Ge sandwiched InSe exhibited higher photocurrent values as compared to those of InSe. On the other hand, the dielectric spectral analysis and modeling which lead to the identifying of the optical conduction parameters presented by the plasmon frequency, electron scattering time, free electron density and drift mobility have shown that the Ge sandwiching increased the drift mobility values from 10 cm(2)/Vs to 42 cm(2)/Vs. The main plasmon frequency also increased from 1.08 to 1.68 GHz. (C) 2017 Elsevier GmbH. All rights reserved.Article Citation - WoS: 8Citation - Scopus: 8Effect of Lithium Nanosandwiching on the Structural, Optical and Dielectric Performance of Moo3(Elsevier, 2019) Al Garni, S. E.; Qasrawi, A. F.In this article, we discuss the effects of lithium nanosheets on the structural, optical, dielectric and optical conductivity parameters of the MoO3 films. The nanosandwiching of Li layers between two layers of MoO3 of thicknesses larger than 20 nm induced the crystallization process of the amorphous MoO3. Namely, MoO3 thin films that are nanosandwiched with Li sheets of thicknesses larger than 50 nm, exhibit structural phase transitions from hexagonal to monoclinic and reveals larger crystallite sizes. The possible formation of Li2O at the MoO3/Li/MoO3 interfaces is simulated and discussed. Optically, the Li nanosandwiching is observed to enhance the light absorbability by 11.0 times at 2.0 eV and successfully engineered the energy bands gap in the range of 3.05-0.45 eV. It also enhances the dielectric performance. In addition, relatively thick layers of lithium (200 nm) succeeds in converting the conductivity type from n-to p-type. The modeling of the dielectric spectra in accordance with the Drude- Lorentz approach have shown that the presence of Li in the structure of MoO(3 )significantly increases the drift mobility values of electrons from 5.86 to 11.40 cm(2)/V. The plasmon frequency range for this system varies in the frequency domain of 0.32-5.94 GHz. The features of MoO3/Li/MoO3 interfaces make them attractive for thin film transistor technology as optical receivers being promising for use in optical communications.

