Search Results

Now showing 1 - 2 of 2
  • Article
    Citation - WoS: 17
    Citation - Scopus: 17
    A New Outlier Detection Method Based on Convex Optimization: Application To Diagnosis of Parkinson's Disease
    (Taylor & Francis Ltd, 2021) Taylan, Pakize; Yerlikaya-Ozkurt, Fatma; Bilgic Ucak, Burcu; Weber, Gerhard-Wilhelm
    Neuroscience is a combination of different scientific disciplines which investigate the nervous system for understanding of the biological basis. Recently, applications to the diagnosis of neurodegenerative diseases like Parkinson's disease have become very promising by considering different statistical regression models. However, well-known statistical regression models may give misleading results for the diagnosis of the neurodegenerative diseases when experimental data contain outlier observations that lie an abnormal distance from the other observation. The main achievements of this study consist of a novel mathematics-supported approach beside statistical regression models to identify and treat the outlier observations without direct elimination for a great and emerging challenge in humankind, such as neurodegenerative diseases. By this approach, a new method named as CMTMSOM is proposed with the contributions of the powerful convex and continuous optimization techniques referred to as conic quadratic programing. This method, based on the mean-shift outlier regression model, is developed by combining robustness of M-estimation and stability of Tikhonov regularization. We apply our method and other parametric models on Parkinson telemonitoring dataset which is a real-world dataset in Neuroscience. Then, we compare these methods by using well-known method-free performance measures. The results indicate that the CMTMSOM method performs better than current parametric models.
  • Article
    Citation - WoS: 29
    Citation - Scopus: 40
    Software Code Smell Prediction Model Using Shannon, Renyi and Tsallis Entropies
    (Mdpi, 2018) Gupta, Aakanshi; Suri, Bharti; Kumar, Vijay; Misra, Sanjay; Blazauskas, Tomas; Damasevicius, Robertas
    The current era demands high quality software in a limited time period to achieve new goals and heights. To meet user requirements, the source codes undergo frequent modifications which can generate the bad smells in software that deteriorate the quality and reliability of software. Source code of the open source software is easily accessible by any developer, thus frequently modifiable. In this paper, we have proposed a mathematical model to predict the bad smells using the concept of entropy as defined by the Information Theory. Open-source software Apache Abdera is taken into consideration for calculating the bad smells. Bad smells are collected using a detection tool from sub components of the Apache Abdera project, and different measures of entropy (Shannon, Renyi and Tsallis entropy). By applying non-linear regression techniques, the bad smells that can arise in the future versions of software are predicted based on the observed bad smells and entropy measures. The proposed model has been validated using goodness of fit parameters (prediction error, bias, variation, and Root Mean Squared Prediction Error (RMSPE)). The values of model performance statistics (R-2, adjusted R-2, Mean Square Error (MSE) and standard error) also justify the proposed model. We have compared the results of the prediction model with the observed results on real data. The results of the model might be helpful for software development industries and future researchers.