Software Code Smell Prediction Model Using Shannon, Renyi and Tsallis Entropies

No Thumbnail Available

Date

2018

Journal Title

Journal ISSN

Volume Title

Publisher

Mdpi

Research Projects

Organizational Units

Organizational Unit
Computer Engineering
(1998)
The Atılım University Department of Computer Engineering was founded in 1998. The department curriculum is prepared in a way that meets the demands for knowledge and skills after graduation, and is subject to periodical reviews and updates in line with international standards. Our Department offers education in many fields of expertise, such as software development, hardware systems, data structures, computer networks, artificial intelligence, machine learning, image processing, natural language processing, object based design, information security, and cloud computing. The education offered by our department is based on practical approaches, with modern laboratories, projects and internship programs. The undergraduate program at our department was accredited in 2014 by the Association of Evaluation and Accreditation of Engineering Programs (MÜDEK) and was granted the label EUR-ACE, valid through Europe. In addition to the undergraduate program, our department offers thesis or non-thesis graduate degree programs (MS).

Journal Issue

Abstract

The current era demands high quality software in a limited time period to achieve new goals and heights. To meet user requirements, the source codes undergo frequent modifications which can generate the bad smells in software that deteriorate the quality and reliability of software. Source code of the open source software is easily accessible by any developer, thus frequently modifiable. In this paper, we have proposed a mathematical model to predict the bad smells using the concept of entropy as defined by the Information Theory. Open-source software Apache Abdera is taken into consideration for calculating the bad smells. Bad smells are collected using a detection tool from sub components of the Apache Abdera project, and different measures of entropy (Shannon, Renyi and Tsallis entropy). By applying non-linear regression techniques, the bad smells that can arise in the future versions of software are predicted based on the observed bad smells and entropy measures. The proposed model has been validated using goodness of fit parameters (prediction error, bias, variation, and Root Mean Squared Prediction Error (RMSPE)). The values of model performance statistics (R-2, adjusted R-2, Mean Square Error (MSE) and standard error) also justify the proposed model. We have compared the results of the prediction model with the observed results on real data. The results of the model might be helpful for software development industries and future researchers.

Description

Misra, Sanjay/0000-0002-3556-9331; Damaševičius, Robertas/0000-0001-9990-1084; KUMAR, VIJAY/0000-0002-2996-7181; Gupta, Aakanshi/0000-0003-0835-8413

Keywords

software design defects, software quality, code smell, entropy, statistical model, regression

Turkish CoHE Thesis Center URL

Citation

26

WoS Q

Q2

Scopus Q

Q2

Source

Volume

20

Issue

5

Start Page

End Page

Collections