A new outlier detection method based on convex optimization: application to diagnosis of Parkinson's disease

No Thumbnail Available

Date

2021

Journal Title

Journal ISSN

Volume Title

Publisher

Taylor & Francis Ltd

Open Access Color

OpenAIRE Downloads

OpenAIRE Views

Research Projects

Organizational Units

Organizational Unit
Department of Electrical & Electronics Engineering
Department of Electrical and Electronics Engineering (EE) offers solid graduate education and research program. Our Department is known for its student-centered and practice-oriented education. We are devoted to provide an exceptional educational experience to our students and prepare them for the highest personal and professional accomplishments. The advanced teaching and research laboratories are designed to educate the future workforce and meet the challenges of current technologies. The faculty's research activities are high voltage, electrical machinery, power systems, signal and image processing and photonics. Our students have exciting opportunities to participate in our department's research projects as well as in various activities sponsored by TUBİTAK, and other professional societies. European Remote Radio Laboratory project, which provides internet-access to our laboratories, has been accomplished under the leadership of our department with contributions from several European institutions.
Organizational Unit
Industrial Engineering
(1998)
Industrial Engineering is a field of engineering that develops and applies methods and techniques to design, implement, develop and improve systems comprising of humans, materials, machines, energy and funding. Our department was founded in 1998, and since then, has graduated hundreds of individuals who may compete nationally and internationally into professional life. Accredited by MÜDEK in 2014, our student-centered education continues. In addition to acquiring the knowledge necessary for every Industrial engineer, our students are able to gain professional experience in their desired fields of expertise with a wide array of elective courses, such as E-commerce and ERP, Reliability, Tabulation, or Industrial Engineering Applications in the Energy Sector. With dissertation projects fictionalized on solving real problems at real companies, our students gain experience in the sector, and a wide network of contacts. Our education is supported with ERASMUS programs. With the scientific studies of our competent academic staff published in internationally-renowned magazines, our department ranks with the bests among other universities. IESC, one of the most active student networks at our university, continues to organize extensive, and productive events every year.

Journal Issue

Abstract

Neuroscience is a combination of different scientific disciplines which investigate the nervous system for understanding of the biological basis. Recently, applications to the diagnosis of neurodegenerative diseases like Parkinson's disease have become very promising by considering different statistical regression models. However, well-known statistical regression models may give misleading results for the diagnosis of the neurodegenerative diseases when experimental data contain outlier observations that lie an abnormal distance from the other observation. The main achievements of this study consist of a novel mathematics-supported approach beside statistical regression models to identify and treat the outlier observations without direct elimination for a great and emerging challenge in humankind, such as neurodegenerative diseases. By this approach, a new method named as CMTMSOM is proposed with the contributions of the powerful convex and continuous optimization techniques referred to as conic quadratic programing. This method, based on the mean-shift outlier regression model, is developed by combining robustness of M-estimation and stability of Tikhonov regularization. We apply our method and other parametric models on Parkinson telemonitoring dataset which is a real-world dataset in Neuroscience. Then, we compare these methods by using well-known method-free performance measures. The results indicate that the CMTMSOM method performs better than current parametric models.

Description

Weber, Gerhard-Wilhelm/0000-0003-0849-7771

Keywords

Neuroscience, regression, mean-shift outliers model, M-estimation, shrinkage, convex optimization

Turkish CoHE Thesis Center URL

Fields of Science

Citation

14

WoS Q

Q2

Scopus Q

Source

Volume

48

Issue

13-15

Start Page

2421

End Page

2440

Collections