A new outlier detection method based on convex optimization: application to diagnosis of Parkinson's disease

dc.authoridWeber, Gerhard-Wilhelm/0000-0003-0849-7771
dc.authorscopusid23974021700
dc.authorscopusid36015912400
dc.authorscopusid57220988079
dc.authorscopusid55634220900
dc.authorwosidWeber, Gerhard-Wilhelm/V-2046-2017
dc.contributor.authorTaylan, Pakize
dc.contributor.authorYerlikaya-Ozkurt, Fatma
dc.contributor.authorBilgic Ucak, Burcu
dc.contributor.authorWeber, Gerhard-Wilhelm
dc.contributor.otherDepartment of Electrical & Electronics Engineering
dc.contributor.otherIndustrial Engineering
dc.date.accessioned2024-07-05T15:19:27Z
dc.date.available2024-07-05T15:19:27Z
dc.date.issued2021
dc.departmentAtılım Universityen_US
dc.department-temp[Taylan, Pakize] Dicle Univ, Dept Math, Diyarbakir, Turkey; [Yerlikaya-Ozkurt, Fatma] Atilim Univ, Dept Ind Engn, Ankara, Turkey; [Bilgic Ucak, Burcu] Dicle Univ, Inst Nat & Appl Sci, Diyarbakir, Turkey; [Weber, Gerhard-Wilhelm] Poznan Univ Tech, Dept Mkt & Econ, Poznan, Poland; [Weber, Gerhard-Wilhelm] METU, IAM, Ankara, Turkeyen_US
dc.descriptionWeber, Gerhard-Wilhelm/0000-0003-0849-7771en_US
dc.description.abstractNeuroscience is a combination of different scientific disciplines which investigate the nervous system for understanding of the biological basis. Recently, applications to the diagnosis of neurodegenerative diseases like Parkinson's disease have become very promising by considering different statistical regression models. However, well-known statistical regression models may give misleading results for the diagnosis of the neurodegenerative diseases when experimental data contain outlier observations that lie an abnormal distance from the other observation. The main achievements of this study consist of a novel mathematics-supported approach beside statistical regression models to identify and treat the outlier observations without direct elimination for a great and emerging challenge in humankind, such as neurodegenerative diseases. By this approach, a new method named as CMTMSOM is proposed with the contributions of the powerful convex and continuous optimization techniques referred to as conic quadratic programing. This method, based on the mean-shift outlier regression model, is developed by combining robustness of M-estimation and stability of Tikhonov regularization. We apply our method and other parametric models on Parkinson telemonitoring dataset which is a real-world dataset in Neuroscience. Then, we compare these methods by using well-known method-free performance measures. The results indicate that the CMTMSOM method performs better than current parametric models.en_US
dc.identifier.citation14
dc.identifier.doi10.1080/02664763.2020.1864815
dc.identifier.endpage2440en_US
dc.identifier.issn0266-4763
dc.identifier.issn1360-0532
dc.identifier.issue13-15en_US
dc.identifier.pmid35707096
dc.identifier.scopus2-s2.0-85098000337
dc.identifier.startpage2421en_US
dc.identifier.urihttps://doi.org/10.1080/02664763.2020.1864815
dc.identifier.urihttps://hdl.handle.net/20.500.14411/1955
dc.identifier.volume48en_US
dc.identifier.wosWOS:000601372800001
dc.identifier.wosqualityQ2
dc.institutionauthorBilgiç, Burcu
dc.institutionauthorYerlikaya Özkurt, Fatma
dc.language.isoenen_US
dc.publisherTaylor & Francis Ltden_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectNeuroscienceen_US
dc.subjectregressionen_US
dc.subjectmean-shift outliers modelen_US
dc.subjectM-estimationen_US
dc.subjectshrinkageen_US
dc.subjectconvex optimizationen_US
dc.titleA new outlier detection method based on convex optimization: application to diagnosis of Parkinson's diseaseen_US
dc.typeArticleen_US
dspace.entity.typePublication
relation.isAuthorOfPublication029c8f2b-45d5-4721-afed-6e98de0d975e
relation.isAuthorOfPublication3fb69d84-e2ef-4946-921b-dfeb392badec
relation.isAuthorOfPublication.latestForDiscovery029c8f2b-45d5-4721-afed-6e98de0d975e
relation.isOrgUnitOfPublicationc3c9b34a-b165-4cd6-8959-dc25e91e206b
relation.isOrgUnitOfPublication12c9377e-b7fe-4600-8326-f3613a05653d
relation.isOrgUnitOfPublication.latestForDiscoveryc3c9b34a-b165-4cd6-8959-dc25e91e206b

Files

Collections