A New Outlier Detection Method Based on Convex Optimization: Application To Diagnosis of Parkinson's Disease

dc.authorid Weber, Gerhard-Wilhelm/0000-0003-0849-7771
dc.authorscopusid 23974021700
dc.authorscopusid 36015912400
dc.authorscopusid 57220988079
dc.authorscopusid 55634220900
dc.authorwosid Weber, Gerhard-Wilhelm/V-2046-2017
dc.contributor.author Taylan, Pakize
dc.contributor.author Yerlikaya-Ozkurt, Fatma
dc.contributor.author Bilgic Ucak, Burcu
dc.contributor.author Weber, Gerhard-Wilhelm
dc.contributor.other Department of Electrical & Electronics Engineering
dc.contributor.other Industrial Engineering
dc.date.accessioned 2024-07-05T15:19:27Z
dc.date.available 2024-07-05T15:19:27Z
dc.date.issued 2021
dc.department Atılım University en_US
dc.department-temp [Taylan, Pakize] Dicle Univ, Dept Math, Diyarbakir, Turkey; [Yerlikaya-Ozkurt, Fatma] Atilim Univ, Dept Ind Engn, Ankara, Turkey; [Bilgic Ucak, Burcu] Dicle Univ, Inst Nat & Appl Sci, Diyarbakir, Turkey; [Weber, Gerhard-Wilhelm] Poznan Univ Tech, Dept Mkt & Econ, Poznan, Poland; [Weber, Gerhard-Wilhelm] METU, IAM, Ankara, Turkey en_US
dc.description Weber, Gerhard-Wilhelm/0000-0003-0849-7771 en_US
dc.description.abstract Neuroscience is a combination of different scientific disciplines which investigate the nervous system for understanding of the biological basis. Recently, applications to the diagnosis of neurodegenerative diseases like Parkinson's disease have become very promising by considering different statistical regression models. However, well-known statistical regression models may give misleading results for the diagnosis of the neurodegenerative diseases when experimental data contain outlier observations that lie an abnormal distance from the other observation. The main achievements of this study consist of a novel mathematics-supported approach beside statistical regression models to identify and treat the outlier observations without direct elimination for a great and emerging challenge in humankind, such as neurodegenerative diseases. By this approach, a new method named as CMTMSOM is proposed with the contributions of the powerful convex and continuous optimization techniques referred to as conic quadratic programing. This method, based on the mean-shift outlier regression model, is developed by combining robustness of M-estimation and stability of Tikhonov regularization. We apply our method and other parametric models on Parkinson telemonitoring dataset which is a real-world dataset in Neuroscience. Then, we compare these methods by using well-known method-free performance measures. The results indicate that the CMTMSOM method performs better than current parametric models. en_US
dc.identifier.citationcount 14
dc.identifier.doi 10.1080/02664763.2020.1864815
dc.identifier.endpage 2440 en_US
dc.identifier.issn 0266-4763
dc.identifier.issn 1360-0532
dc.identifier.issue 13-15 en_US
dc.identifier.pmid 35707096
dc.identifier.scopus 2-s2.0-85098000337
dc.identifier.startpage 2421 en_US
dc.identifier.uri https://doi.org/10.1080/02664763.2020.1864815
dc.identifier.uri https://hdl.handle.net/20.500.14411/1955
dc.identifier.volume 48 en_US
dc.identifier.wos WOS:000601372800001
dc.identifier.wosquality Q2
dc.institutionauthor Bilgiç, Burcu
dc.institutionauthor Yerlikaya Özkurt, Fatma
dc.language.iso en en_US
dc.publisher Taylor & Francis Ltd en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.scopus.citedbyCount 15
dc.subject Neuroscience en_US
dc.subject regression en_US
dc.subject mean-shift outliers model en_US
dc.subject M-estimation en_US
dc.subject shrinkage en_US
dc.subject convex optimization en_US
dc.title A New Outlier Detection Method Based on Convex Optimization: Application To Diagnosis of Parkinson's Disease en_US
dc.type Article en_US
dc.wos.citedbyCount 15
dspace.entity.type Publication
relation.isAuthorOfPublication 029c8f2b-45d5-4721-afed-6e98de0d975e
relation.isAuthorOfPublication 3fb69d84-e2ef-4946-921b-dfeb392badec
relation.isAuthorOfPublication.latestForDiscovery 029c8f2b-45d5-4721-afed-6e98de0d975e
relation.isOrgUnitOfPublication c3c9b34a-b165-4cd6-8959-dc25e91e206b
relation.isOrgUnitOfPublication 12c9377e-b7fe-4600-8326-f3613a05653d
relation.isOrgUnitOfPublication.latestForDiscovery c3c9b34a-b165-4cd6-8959-dc25e91e206b

Files

Collections