8 results
Search Results
Now showing 1 - 8 of 8
Article Citation - WoS: 3Citation - Scopus: 3Synthesis of Silver Nanoparticle-Immobilized Antibacterial Anion-Exchange Membranes for Salinity Gradient Energy Production by Reverse Electrodialysis(Amer Chemical Soc, 2024) Eti, Mine; Cihanoglu, Aydin; Hamaloglu, Kadriye Ozlem; Altiok, Esra; Guler, Enver; Tuncel, Ali; Kabay, NalanBiofouling, stemming from the attachment of living microorganisms, such as bacteria, which form resilient biofilms on membrane surfaces, presents a significant challenge that hampers the efficiency of anion-exchange membranes (AEMs) in reverse electrodialysis (RED) applications. This limitation curtails the generation of electrical power from salinity gradients, which notably is a sustainable form of energy known as osmotic energy. RED stands as a clean and promising process to harness this renewable energy source. This study aimed to impart antibacterial activity to synthesized AEMs by using silver nanoparticles (AgNPs). For that purpose, AgNPs were synthesized at 30 degree celsius using two different pH values (6.0 and 9.0) and immobilized into synthesized AEMs using the dip-coating technique. In nanoparticle synthesis, ascorbic acid and trisodium citrate were used as a reductant and a stabilizer, respectively, to take control of the particle size and agglomeration behavior. The results indicated that AgNPs synthesized at pH 6.0 were dispersed on the AEM surface without agglomeration. The stability of AgNPs immobilized on the membrane surface was tested under low- and high-saline solutions. The antibacterial activities of AEMs were determined with the colony-counting method using Gram-negative (Escherichia coli) bacterial suspension. The viability of bacteria dramatically decreased after the immobilization of AgNPs in the AEMs. In the short- and long-term RED tests, it has been observed that the AEMs having AgNPs have high energy-generating potentials, and power density up to 0.372 W/m(2) can be obtained.Article Citation - WoS: 15Metal-Salt Enhanced Grafting of Vinylpyridine and Vinylimidazole Monomer Combinations in Radiation Grafted Membranes for High-Temperature PEM Fuel Cells(Amer Chemical Soc, 2020) Mojarrad, Naeimeh Rajabalizadeh; Sadeghi, Sahl; Kaplan, Begum Yarar; Guler, Enver; Gursel, Selmiye AlkanProton exchange membranes were prepared and characterized for utilization in high-temperature proton exchange membrane fuel cells, HT-PEMFCs. 1-vinylimidazole (1-VIm) and 4-vinylpyridine (4VP) monomers were simultaneously grafted onto pre-irradiated ETFE (ethylene-co-tetrafluoroethylene) films which were prepared using gamma-rays with a dose of 100 kGy, as a robust substrate to prepare acid-base composite membranes. The grafting reaction was performed at 60 degrees C for 24 h followed by protonation via phosphoric acid doping in the subsequent step. The effect of adding ferrous salts as promoters in grafting was investigated by characterization of resultant membranes via thermal gravimetric analysis and mechanical tests. The fuel cell tests were conducted under different relative humidities (RHs) and applied temperatures. Membranes prepared with salt addition exhibited superior proton conductivities. Results including up to 80 mS cm(-1) conductivity at 110 degrees C in 60% RH and excellent thermal stability, even at 300 degrees C, suggest these membranes are promising for HT-PEMFC applications.Article Citation - WoS: 14Dissociative Adsorption of Water at (211) Stepped Metallic Surfaces by First-Principles Simulations(Amer Chemical Soc, 2017) Pekoz, Rengin; Donadio, DavideSteps at high-index metallic surfaces display higher chemical reactivity than close-packed surfaces and may give rise to selective adsorption and partial dissociation of water. Inspired by differential desorption experiments, we have studied the adsorption and dissociation of water clusters and one-dimensional wires on Pt(211) by density functional theory and molecular dynamics simulations. These calculations reveal that water at the step edges of Pt(211) adsorbs more weakly than at Pt(221), but partial dissociation of adsorbed water clusters is energetically competitive. We observe that the one-dimensional structure proposed experimentally can be realized only by partially dissociated water wires. In addition, weaker adsorption allows the formation of structures in which a number of water molecules detach from the step and form weak hydrogen bonds with the terrace. This study is further extended to the energetics of small water clusters on (211) surfaces of Ir, Rh, and Pd.Article Citation - WoS: 14Citation - Scopus: 8Structural and Optical Properties of Interfacial Inse Thin Film(Amer Chemical Soc, 2024) Emir, Cansu; Tataroglu, Adem; Coskun, Emre; Ocak, Sema BilgeThis study presents a comprehensive investigation of the optical and structural characteristics of the indium selenide (InSe) film prepared on a glass substrate. The structural characteristics of the InSe film were analyzed using characterization techniques including X-ray diffraction, scanning electron microscopy, and energy-dispersive X-ray spectroscopy while the UV-vis spectrophotometry method was used in the spectral range between 500 and 1000 nm to examine the optical characteristics. Thus, the UV-vis spectroscopic data were used to extract several optical parameters including extinction coefficient (k), optical band gap (E-g), refractive index (n), absorption coefficient (alpha), and optical conductivity (sigma(opt)). The optical transition of InSe was found as a direct transition. However, the optical analysis of this study has revealed that the InSe film has the potential to be used in various optoelectronic and photovoltaic applications.Article Citation - WoS: 58Two-Dimensional Fluorinated Boron Sheets: Mechanical, Electronic, and Thermal Properties(Amer Chemical Soc, 2018) Pekoz, Rengin; Konuk, Mine; Kilic, M. Emin; Durgun, EnginThe synthesis of atomically thin boron sheets on a silver substrate opened a new area in the field of two-dimensional systems. Similar to hydrogenated and halogenated graphene, the uniform coating of borophene with fluorine atoms can lead to new derivatives of borophene with novel properties. In this respect, we explore the possible structures of fluorinated borophene for varying levels of coverage (BnF) by using first-principles methods. Following the structural optimizations, phonon spectrum analysis and ab initio molecular dynamics simulations are performed to reveal the stability of the obtained structures. Our results indicate that while fully fluorinated borophene (BF) cannot be obtained, stable configurations with lower coverage levels (B4F and B2F) can be attained. Unveiling the stable structures, we explore the mechanical, electronic, and thermal properties of (BnF). Fluorination significantly alters the mechanical properties of the system, and remarkable results, including direction-dependent variation of Young's modulus and a switch from a negative to positive Poisson's ratio, are obtained. However, the metallic character is preserved for low coverage levels, and metal to semiconductor transition is obtained for B2F. The heat capacity at a low temperature increases with an increasing F atom amount but converges to the same limiting value at high temperatures. The enhanced stability and unique properties of fluorinated borophene make it a promising material for various high-technology applications in reduced dimensions.Article Citation - WoS: 7Citation - Scopus: 7Dft Insights Into Noble Gold-Based Compound Li5aup2: Effect of Pressure on Physical Properties(Amer Chemical Soc, 2023) Surucu, Gokhan; Gencer, Aysenur; Surucu, Ozge; Ali, Md. AshrafIn this study, the Li5AuP2 compound is investigated in detail due to the unique chemical properties of gold that are different from other metals. Pressure is applied to the compound from 0 to 25 GPa to reveal its structural, mechanical, electronic, and dynamical properties using density functional theory (DFT). Within this pressure range, the compound is optimized with a tetragonal crystal structure, making it mechanically and dynam-ically stable above 18 GPa and resulting in an increment of bulk, shear, and Young's moduli of Li5AuP2. Pressure application, furthermore, changes the brittle or ductile nature of the compound. The anisotropic elastic and sound wave velocities are visualized in three dimensions. The thermal properties of the Li5AuP2 compound are obtained, including enthalpy, free energy, entropy x T, heat capacity, and Debye temperature. The electronic properties of the Li5AuP2 compound are studied using the Perdew-Burke-Ernzerhof (PBE) and Heyd-Scuseria-Ernzerhof (HSE) functionals. The pressure increment is found to result in higher band gap values. The Mulliken and bond overlap populations are also determined to reveal the chemical nature of this compound. The optical properties, such as dielectric functions, refractive index, and energy loss function of the Li5AuP2 compound, are established in detail. To our knowledge, this is the first attempt to study this compound in such detail, thus, making the results obtained here beneficial for future studies related to the chemistry of gold.Article Citation - WoS: 58Fast Neutron Imaging With Semiconductor Nanocrystal Scintillators(Amer Chemical Soc, 2020) McCall, Kyle M.; Sakhatskyi, Kostiantyn; Lehmann, Eberhard; Walfort, Bernhard; Losko, Adrian S.; Montanarella, Federico; Kovalenko, Maksym, VFast neutrons offer high penetration capabilities for both light and dense materials due to their comparatively low interaction cross sections, making them ideal for the imaging of large-scale objects such as large fossils or as-built plane turbines, for which X-rays or thermal neutrons do not provide sufficient penetration. However, inefficient fast neutron detection limits widespread application of this technique. Traditional phosphors such as ZnS:Cu embedded in plastics are utilized as scintillators in recoil proton detectors for fast neutron imaging. However, these scintillation plates exhibit significant light scattering due to the plastic-phosphor interface along with long-lived afterglow (on the order of minutes), and therefore alternative solutions are needed to increase the availability of this technique. Here, we utilize colloidal nanocrystals (NCs) in hydrogen-dense solvents for fast neutron imaging through the detection of recoil protons generated by neutron scattering, demonstrating the efficacy of nanomaterials as scintillators in this detection scheme. The light yield, spatial resolution, and neutron-vs-gamma sensitivity of several chalcogenide (CdSe and CuInS2)-based and perovskite halide-based NCs are determined, with only a short-lived afterglow (below the order of seconds) observed for all of these NCs. FAPbBr(3) NCs exhibit the brightest total light output at 19.3% of the commercial ZnS:Cu(PP) standard, while CsPbBrCl2:Mn NCs offer the best spatial resolution at similar to 2.6 mm. Colloidal NCs showed significantly lower gamma sensitivity than ZnS:Cu; for example, 79% of the FAPbBr(3) light yield results from neutron-induced radioluminescence and hence the neutron-specific light yield of FAPbBr(3) is 30.4% of that of ZnS:Cu(PP). Concentration and thickness-dependent measurements highlight the importance of increasing concentrations and reducing self-absorption, yielding design principles to optimize and foster an era of NC-based scintillators for fast neutron imaging.Article Citation - WoS: 24Citation - Scopus: 24Light-Induced Paramagnetism in Colloidal Ag+-doped Cdse Nanoplatelets(Amer Chemical Soc, 2021) Najafi, Arman; Sharma, Manoj; Delikanli, Savas; Bhattacharya, Arinjoy; Murphy, Joseph R.; Pientka, James; Petrou, AthosWe describe a study of the magneto-optical properties of Ag+-doped CdSe colloidal nanoplatelets (NPLs) that were grown using a novel doping technique. In this work, we used magnetic circularly polarized luminescence and magnetic circular dichroism spectroscopy to study light-induced magnetism for the first time in 2D solution-processed structures doped with nominally nonmagnetic Ag+ impurities. The excitonic circular polarization (P-X) and the exciton Zeeman splitting (Delta E-Z) were recorded as a function of the magnetic field (B) and temperature (T). Both Delta E-Z and P-X have a Brillouin-function-like dependence on B and T, verifying the presence of paramagnetism in Ag+-doped CdSe NPLs. The observed light-induced magnetism is attributed to the transformation of nonmagnetic Ag+ ions into Ag2+, which have a nonzero magnetic moment. This work points to the possibility of incorporating these nanoplatelets into spintronic devices, in which light can be used to control the spin injection.

