Synthesis of Silver Nanoparticle-Immobilized Antibacterial Anion-Exchange Membranes for Salinity Gradient Energy Production by Reverse Electrodialysis

No Thumbnail Available

Date

2024

Journal Title

Journal ISSN

Volume Title

Publisher

Amer Chemical Soc

Research Projects

Organizational Units

Organizational Unit
Chemical Engineering
(2010)
Established in 2010, and aiming to train the students with the capacity to meet the demands of the 21st Century, the Chemical Engineering Department provides a sound chemistry background through intense coursework and laboratory practices, along with fundamental courses such as Physics and Mathematics within the freshman and sophomore years, following preparatory English courses.In the final two years of the program, engineering courses are offered with laboratory practice and state-of-the-art simulation programs, combining theory with practice.

Journal Issue

Abstract

Biofouling, stemming from the attachment of living microorganisms, such as bacteria, which form resilient biofilms on membrane surfaces, presents a significant challenge that hampers the efficiency of anion-exchange membranes (AEMs) in reverse electrodialysis (RED) applications. This limitation curtails the generation of electrical power from salinity gradients, which notably is a sustainable form of energy known as osmotic energy. RED stands as a clean and promising process to harness this renewable energy source. This study aimed to impart antibacterial activity to synthesized AEMs by using silver nanoparticles (AgNPs). For that purpose, AgNPs were synthesized at 30 degree celsius using two different pH values (6.0 and 9.0) and immobilized into synthesized AEMs using the dip-coating technique. In nanoparticle synthesis, ascorbic acid and trisodium citrate were used as a reductant and a stabilizer, respectively, to take control of the particle size and agglomeration behavior. The results indicated that AgNPs synthesized at pH 6.0 were dispersed on the AEM surface without agglomeration. The stability of AgNPs immobilized on the membrane surface was tested under low- and high-saline solutions. The antibacterial activities of AEMs were determined with the colony-counting method using Gram-negative (Escherichia coli) bacterial suspension. The viability of bacteria dramatically decreased after the immobilization of AgNPs in the AEMs. In the short- and long-term RED tests, it has been observed that the AEMs having AgNPs have high energy-generating potentials, and power density up to 0.372 W/m(2) can be obtained.

Description

Güler, Enver/0000-0001-9175-0920

Keywords

biofouling, anion-exchange membranes, reverseelectrodialysis, silver nanoparticles, antibacterialactivity

Turkish CoHE Thesis Center URL

Citation

0

WoS Q

Q1

Scopus Q

Source

Volume

12

Issue

10

Start Page

3977

End Page

3986

Collections