8 results
Search Results
Now showing 1 - 8 of 8
Conference Object Citation - WoS: 28Citation - Scopus: 34Enhancement of Direct Methanol Fuel Cell Performance Through the Inclusion of Zirconium Phosphate(Pergamon-elsevier Science Ltd, 2017) Ozden, Adnan; Ercelik, Mustafa; Ozdemir, Yagmur; Devrim, Yilser; Colpan, C. OzgurNafion/zirconium hydrogen phosphate (ZrP) composite membranes containing 2.5 wt.% ZrP (NZ-2.5) or 5 wt.% ZrP (NZ-5) were prepared to improve the performance of a direct methanol fuel cell (DMFC). The influence of ZrP content on the Nafion matrix is assessed through characterization techniques, such as Thermogravimetric Analysis (TGA), X-ray Diffraction (XRD), Scanning Electron Microscopy (SEM), Electrochemical Impedance Spectroscopy (EIS), and water uptake measurement. Performance testings of the DMFCs based on these composite membranes as well as commercial Nafion (R) 115 membrane were performed using a computer aided fuel cell test station for different values of cell temperature (40 degrees C, 60 degrees C, 80 degrees C, and 100 degrees C) and methanol concentration (0.75 M, 1.00 M, and 1.50 M). Characterization studies indicated that incorporation of ZrP into polymer matrix enhanced the water uptake and proton conductivity values of Nafion membrane. The results of the performance tests showed that the Membrane Electrode Assembly (MEA) having NZ-2.5 provided the highest performance with the peak power density of 551.52 W/m(2) at 100 degrees C and 1.00 M. Then, the performances of the MEAs having the same NZ-2.5 membrane but different cathode catalysts were investigated by fabricating two different MEAs using cathode catalysts made of Pt/C-ZrP and Pt/C (HiSPEC (R) 9100). According to the results of these experiments, the MEA having NZ-2.5 membrane and Pt/C (HiSPEC (R) 9100) cathode catalyst containing 10 wt.% of ZrP exhibited the highest performance with the peak power density of 620.88 W/m(2) at 100 degrees C and 1.00 M. In addition, short-term stability tests were conducted for all the MEAs. The results of the stability tests revealed that introduction of ZrP to commercial (HiSPEC (R) 9100) cathode catalyst improves its stability characteristics. (C) 2017 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.Article Citation - WoS: 19Citation - Scopus: 21Development of Effective Bimetallic Catalyst for High-Temperature Pem Fuel Cell To Improve Co Tolerance(Wiley, 2021) Al-Tememy, Mogdam Gassy Hussein; Devrim, YilserIn this study, it is aimed to examine the effect of multi-walled carbon nanotube doped graphene nanoplatelet (MWCNT-GNP) supported PtPd bimetallic catalyst on the performance of the high-temperature proton-exchange membrane fuel cell (HT-PEMFC). In addition, PtPd/GNP and PtPd/MWCNT bimetallic catalysts were also investigated for performance comparison. The characterizations of these catalysts were examined by ICP-MS, XRD, HR-TEM, and TGA analysis. The electrochemical characterizations of the catalysts were performed for both cyclic voltammetry (CV) and CO stripping experiments, as well as HT-PEMFC tests. The specific surface area (SSA) for PtPd/GNP and PtPd/MWCNT catalysts was obtained as 148 and 137 m(2)/g, respectively, while the highest SSA was achieved as 164 m(2)/g for PtPd/MWCNT-GNP. The performance of the catalysts was confirmed with the HT-PEMFC tests, based on the H-2/air and reformate gas/air experiments. The electrocatalytic results display that PdPt bimetallic catalysts exhibited higher catalytic property than that of commercial Pt/C catalyst. The highest performance was achieved with PtPd/MWCNT-GNP catalyst as 0.390 and 0.310 W/cm(2)at 160 degrees C for H-2/air and reformat/air, respectively. The obtained results indicate that the PtPd/MWCNT-GNP catalyst is appropriate for HT-PEMFC operations.Article Citation - WoS: 44Citation - Scopus: 45Carbon Nanotube-Graphene Supported Bimetallic Electrocatalyst for Direct Borohydride Hydrogen Peroxide Fuel Cells(Pergamon-elsevier Science Ltd, 2021) Uzundurukan, Arife; Akca, Elif Seda; Budak, Yagmur; Devrim, YilserAt present study, carbon nanotube-graphene (CNT-G) supported PtAu, Au and Pt catalysts were prepared by microwave-assisted synthesis method to investigate the direct liquid-fed sodium borohydride/hydrogen peroxide (NaBH4/H2O2) fuel cell performance. Prepared catalysts were characterized by TGA, XRD, TEM, ICP-OES, cyclic voltammetry and rotating disc electrode (RDE) voltammetry. The catalysts were tested in a single NaBH4/H2O2 fuel cell with 25 cm(2) active area to evaluate fuel cell performance. The effects of temperature and fuel concentration on fuel cell performance were examined to observed best operating conditions. As a result of direct NaBH4/H2O2 fuel cell experiments, maximum power densities of 139 mW/cm(2), 125 mW/cm(2) and 113 mW/cm(2) were obtained for PtAu/CNT-G, Au/CNT-G and Pt/CNT-G catalysts, respectively. PtAu/CNT-G catalyst showed the enhanced NaBH4/H2O2 fuel cell performance, which was higher than the Pt/CNT-G catalyst and Au/CNT-G catalyst at 50 degrees C. The enhanced NaBH4/H2O2 performance can be attributed to synergistic effects between Pt and Au particles on CNT-G support providing a better catalyst utilization and interaction. These results suggest that the prepared PtAu/CNT-G catalyst is a promising anode catalyst for NaBH4/H2O2 fuel cell application. (c) 2020 Elsevier Ltd. All rights reserved.Article Citation - WoS: 21Citation - Scopus: 21Investigation of Hydrogen Production From Sodium Borohydride by Carbon Nano Tube-Graphene Supported Pdru Bimetallic Catalyst for Pem Fuel Cell Application(Wiley, 2022) Al-Msrhad, Tuqa Majeed Hameed; Devrim, Yilser; Uzundurukan, Arife; Budak, YagmurIn this study, hydrogen (H-2) generation from the hydrolysis of sodium borohydride (NaBH4) catalyzed by bimetallic Palladium-Ruthenium (PdRu) supported on multiwalled carbon nanotube-graphene (MWCNT-GNP) hybrid material is investigated. The effect of various parameters such as temperature, NaBH4 concentration, and catalyst loading and effect of base concentration are examined to observed optimum operating conditions. Experimental results show that the PdRu/MWCNT-GNP bimetallic catalyst has high catalytic activity on NaBH4 hydrolysis reaction. It has been found that PdRu/MWCNT-GNP catalyst shows low activation energy of 22.33 kJ/mol for hydrolysis reaction of NaBH4. The PdRu/MWCNT-GNP catalyst also exhibits H-2 generation rate of 79.2 mmol/min center dot g(cat) at 45 degrees C. It shows good cycle stability in the catalyst reusability test and retained 89% of its initial catalytic activity after fifth use. The high catalytic activity of the PdRu/MWCNT-GNP catalyst makes it promising in H-2 generation from NaBH4 hydrolysis for commercial proton exchange membrane fuel cell (PEMFC) applications.Article Citation - WoS: 5Citation - Scopus: 9Development and Performance Analysis of Polybenzimidazole/Boron Nitride Composite Membranes for High-Temperature Pem Fuel Cells(Wiley, 2022) Hussin, Dedar Emad; Budak, Yagmur; Devrim, YilserIn this research, polybenzimidazole/boron nitride (PBI/BN) based composite membranes have been prepared for high-temperature PEM fuel cell (HT-PEMFC). BN was preferred because of its superior thermal robustness, high chemical stability, non-conductor property, and high plasticizer characteristic. The loading of BN in the composite membrane was studied between 2.5 to 10 wt%. The composite membranes were characterized using TGA, DSC, XRD, SEM, mechanical tests, acid doping/leaching, and proton conductivity measurements. The highest conductivity of 0.260 S/cm was found for PBI/BN-2.5 membrane at 180 degrees C. It has been determined that the PBI/BN-2.5 membrane has higher performance than the PBI membrane according to the HT-PEMFC tests performed with Hydrogen and dry air. The heightened HT-PEMFC performance can be ascribed to interactive effects between BN particles and the PBI polymer matrix. PBI/BN composite membranes show a good perspective in the high-temperature PEMFC applications.Article Citation - WoS: 9Citation - Scopus: 10Evaluation of Hybridsolar-Wind System Based on Methanol Electrolyzer(Wiley, 2020) Budak, Yagmur; Devrim, YilserIn this study, it is aimed to meet the annual electricity and heating needs of a house without interruption with the photovoltaic panel, wind turbine, methanol electrolyzer, and high temperature proton exchange membrane fuel cell system. The system results show that the use of the 2 WT with 18 PV was enough to provide the need of the methanol electrolyzer, which provides requirements of the high temperature proton exchange membrane fuel cell. The produced heat by the fuel cell was used to meet the heat requirement of the house with combined heat and power system. Electrical, thermal and total efficiencies of fuel cell system with combined heat and power were obtained as 38.54%, 51.77% and 90%, respectively. Additionally, the levelized cost of energy of the system was calculated as 0.295 $/kWh with combined heat and power application. The results of this study show that H(2)is useful for long-term energy storage in off-grid energy systems and that the proposed hybrid system may be the basis for future H-2-based alternative energy applications.Conference Object Citation - WoS: 9Citation - Scopus: 13Design of a Hybrid Photovoltaic-Electrolyzer Fuel Cell System for Developing Solar Model(Wiley-v C H verlag Gmbh, 2015) Devrim, Yilser; Pehlivanoglu, KubraThe world's fossil fuel energy reserves have rapidly decreased, while the energy demand has increased due to industrial growth, population growth, and technology advances, all of which affect the environment by the production of greenhouse gases. Alternative energy sources such as solar, hydrogen, etc. are attracting more attention as an alternative of fossil fuels. We present in this study hybrid photovoltaic (PV) panels/PEM electrolyzer/high temperature proton exchange membrane fuel cell (HTPEMFC) system used in off-grid application. The purpose of a hybrid system is to produce as much energy from alternative energy sources to ensure the load demand. Solar energy is used as primary source and a fuel cell is used as backup power. The hybrid system is designed and analyzed according to the new solar radiation model. Firstly a new solar model is developed to determine solar radiation on horizontal surface. After that solar radiation on tilted surface is obtained by using solar radiation on horizontal surface model for PV panel calculations. The hybrid system is modelled and the obtained results presented and discussed. (C) 2015 WILEY-VCH Verlag GmbH & Co. KGaA, WeinheimArticle Citation - WoS: 26Citation - Scopus: 27Performance of an Ht-Pemfc Having a Catalyst With Graphene and Multiwalled Carbon Nanotube Support(Wiley, 2019) Alpaydin, Guvenc Umur; Devrim, Yilser; Colpan, C. OzgurIn this study, the effect of multiwalled carbon nanotube and graphene nanoplatelet-based catalyst supports on the performance of reformate gas-fed polybenzimidazole (PBI)-based high-temperature proton exchange membrane fuel cell (HT-PEMFC) was investigated. In addition, the effect of several microwave conditions on the performance of the Pt-Ru/multiwalled carbon nanotube (MWCNT)-graphene nanoplatelet (GNP) catalyst was assessed. Through X-ray diffraction, thermal gravimetric analysis, transmission electron microscopy, scanning electron microscopy, and energy dispersive spectroscopy, the catalysts' chemical structure and morphology were characterized. Cyclic voltammetry analysis was used for the electrochemical characterization of catalysts through an electrochemical cell with three electrodes connected to a potentiostat. The results showed that the best performing catalyst is the catalyst produced using 800-W power for 40 seconds. The electrochemically active surface area values of this catalyst ranged from 54 to 45 m(2)/g. Single-cell performance tests of the HT-PEMFC were then carried out. In these tests, reformate gas mixture, consisting of H-2, CO2, and CO, was fed to the anode side at 160 degrees C without humidification. These tests for the best performing catalyst yielded peak power density of 0.280 W/cm(2) and current density (at 0.6 V) of 0.180 A/cm(2) in the H-2/air environment and peak power density of 0.266 W/cm(2) and current density (at 0.6 V) of 0.171 A/cm(2) in the reformate gas/air environment. As a result of the experiments, it was found that Pt-Ru/MWCNT-GNP hybrid material is a suitable catalyst for HT-PEMFC.

