Investigation of hydrogen production from sodium borohydride by carbon nano tube-graphene supported PdRu bimetallic catalyst for PEM fuel cell application

No Thumbnail Available

Date

2022

Journal Title

Journal ISSN

Volume Title

Publisher

Wiley

Research Projects

Organizational Units

Organizational Unit
Energy Systems Engineering
(2009)
The Department of Energy Systems Engineering admitted its first students and started education in the academic year of 2009-2010 under Atılım University School of Engineering. In this Department, all kinds of energy are presented in modules (conventional energy, renewable energy, hydrogen energy, bio-energy, nuclear energy, energy planning and management) from their detection, production and procession; to their transfer and distribution. A need is to arise for a surge of energy systems engineers to ensure energy supply security and solve environmental issues as the most important problems of the fifty years to come. In addition, Energy Systems Engineering is becoming among the most important professions required in our country and worldwide, especially within the framework of the European Union harmonization process, and within the free market economy.

Journal Issue

Abstract

In this study, hydrogen (H-2) generation from the hydrolysis of sodium borohydride (NaBH4) catalyzed by bimetallic Palladium-Ruthenium (PdRu) supported on multiwalled carbon nanotube-graphene (MWCNT-GNP) hybrid material is investigated. The effect of various parameters such as temperature, NaBH4 concentration, and catalyst loading and effect of base concentration are examined to observed optimum operating conditions. Experimental results show that the PdRu/MWCNT-GNP bimetallic catalyst has high catalytic activity on NaBH4 hydrolysis reaction. It has been found that PdRu/MWCNT-GNP catalyst shows low activation energy of 22.33 kJ/mol for hydrolysis reaction of NaBH4. The PdRu/MWCNT-GNP catalyst also exhibits H-2 generation rate of 79.2 mmol/min center dot g(cat) at 45 degrees C. It shows good cycle stability in the catalyst reusability test and retained 89% of its initial catalytic activity after fifth use. The high catalytic activity of the PdRu/MWCNT-GNP catalyst makes it promising in H-2 generation from NaBH4 hydrolysis for commercial proton exchange membrane fuel cell (PEMFC) applications.

Description

DEVRIM, YILSER/0000-0001-8430-0702; UZUNDURUKAN, ARIFE/0000-0003-1104-1644

Keywords

bimetallic catalyst, graphene, H-2 generation, hydrolysis, multiwalled carbon nanotube, sodium borohydride

Turkish CoHE Thesis Center URL

Citation

10

WoS Q

Q1

Scopus Q

Q1

Source

Volume

46

Issue

4

Start Page

4156

End Page

4173

Collections