Search Results

Now showing 1 - 10 of 18
  • Article
    Citation - WoS: 25
    Citation - Scopus: 27
    A New Processable and Fluorescent Polydithienylpyrrole Electrochrome With Pyrene Appendages
    (Pergamon-elsevier Science Ltd, 2013) Tirkes, Seha; Mersini, Jetmire; Oztas, Zahide; Algi, Melek Pamuk; Algi, Fatih; Cihaner, Atilla
    A new hybrid compound, namely 1-(pyren-3-yl)-2,5-di(thiophen-2-yl)-1H-pyrrole (SNS-P), was polymerized via both chemical and electrochemical methods. Chemically obtained soluble polydithienylpyrrole (c-PSNS-P) bearing pyrene appendages is a homogeneous and uniform polymer with a number averaged molecular weight of 15,200 g/mol. The polymer exhibits both multi-electrochromic and fluorescent properties. Upon oxidation, the color of electrochemically obtained polymer (e-PSNS-P) changes from yellowish orange to greenish yellow and to green/blue and finally to blue. In addition, the polymer induces yellowish orange (564 nm) and bright orange emission (613 nm) in solution and solid states, respectively. (C) 2012 Elsevier Ltd. All rights reserved.
  • Article
    Citation - WoS: 14
    Citation - Scopus: 16
    Electrosynthesis of Polyfuran in Acetonitrile-Boron Trifluoride-Ethyl Ether Mixture and Its Device Application
    (John Wiley & Sons inc, 2007) Tirkes, Seha; Onal, Ahmet M.
    Electrochemical polymerization of furan was achieved in acetonitrile/boron trifluoride/ethyl ether (CH3 CN/BF3/EE) mixture in the presence of tetrabutylammonium tetrafluoroborate via constant potential electrolysis at 1.4 V versus Ag/AgCl. Electrochemical behavior of furan was investigated in the same solvent mixture of varying ratios, utilizing cyclic voltammetry. Free-standing polyfuran (PFu) films were obtained in CH3CN/BF3/EE mixture (2/4/4; v/v/v) and characterized using FTIR spectroscopic technique. Spectroelectrochemical behavior of the PFu film was investigated by recording the electronic absorption spectra, in sitn, in monomer-free solution. It is observed that PFu film can be reversibly cycled between -0.1 V (gray) and + 0.6 V versus Ag-wire (gray color); however, this behavior diminishes in the presence of water. Electrochromic device application of PFu film with poly(ethylene dioxythiophene) was also studied. (c) 2006 Wiley Periodicals, Inc.
  • Article
    Citation - WoS: 64
    Citation - Scopus: 74
    Production and Characterization of Poly (lactic Acid)-Based Biocomposites Filled With Basalt Fiber and Flax Fiber Hybrid
    (Sage Publications Ltd, 2020) Eselini, Najah; Tirkes, Seha; Akar, Alinda Oyku; Tayfun, Umit
    Poly (lactic acid) (PLA)-based biocomposites containing flax fiber (FF) and basalt fiber (BF) both separately and together were prepared by melt blending method at the total constant ratio of 30 wt%. Mechanical properties, thermo-mechanical characteristics, thermal stability, flow behaviors, water uptake, and morphology of composites were investigated by tensile, hardness and impact tests, dynamic mechanical analysis (DMA), thermal gravimetric analysis, melt flow index (MFI) test, water absorption, and scanning electron microscopy, respectively. Mechanical test results show that tensile strength, elongation, elastic modulus, and impact strength are extended up to higher values with increase in BF content in hybrid composites. Conversely, the presence of FF displays a negative effect in which these values drop down drastically as the FF concentration increases. On the other hand, slightly higher hardness values are obtained by the addition of FF at higher loadings. DMA analysis reveals that BF inclusion leads glass transition temperature of PLA to one point higher, but hybrid and FF containing composites shift that temperature to lower values. Storage moduli of composites are enhanced with the increase in BF concentration and remarkable decreases are observed for FF-filled composites. Hybrid composites exhibit average MFI values between PLA/FF and PLA/BF composites.
  • Article
    Citation - WoS: 8
    Citation - Scopus: 9
    Contribution of Surface Silanization Process on Mechanical Characteristics of Tpu-Based Composites Involving Feldspar and Quartz Minerals
    (Wiley, 2023) Bouzmane, Hajar; Tirkes, Suha; Yilmaz, Volkan Murat; Tayfun, Umit; Tirkes, Seha
    In this study, quartz and feldspar powders were surface treated using a silane coupling agent to achieve a more compatible mineral surface with the polymer matrix. Details of surface characteristics of minerals were examined by energy-dissipative X-ray spectroscopy, contact angle measurements, and infrared spectroscopy. Thermoplastic polyurethane-TPU was compounded with minerals using the melt-blending technique. Mechanical, thermo-mechanical, melt-flow, and morphological characterizations of TPU and relevant composites were performed by utilizing tensile and Shore hardness tests, dynamic mechanical analysis (DMA), melt flow index (MFI) measurements, and scanning electron microscopy (SEM), respectively. Water repellency of TPU and composites were also evaluated experimentally. Effects of surface treatments were discussed by comparing the results of composites filled with pristine and modified minerals. Results revealed that enrichment of quartz and feldspar surfaces confer mechanical and thermo-mechanical performance of composites. Mineral inclusions caused no drastic changes to the MFI parameter of TPU. The silane layer on the mineral surface displayed a barrier effect to water uptake of composites. Homogeneous dispersion and improved interfacial adhesion of mineral particles to the TPU phase were confirmed with help of SEM observations. Quartz exhibited slightly higher performance thanks to its silica-rich composition. The findings of this research exhibited the considerable influence of the silane layer on the mineral surface on the mechanical performance of TPU-based composites.
  • Article
    Citation - WoS: 30
    Citation - Scopus: 31
    A New Low-Voltage Polymeric Electrochromic
    (Elsevier Sci Ltd, 2010) Pamuk, Melek; Tirkes, Seha; Cihaner, Atilla; Algi, Fatih
    Design, synthesis, and properties of a novel donor-acceptor-donor type low-voltage-driven green polymeric electrochrome, P1, which is based on 8-(2,3-dihydrothieno[3,4-b][1,4]dioxin-5-yl)-11-(2,3-dihydrothieno[3,4-b][l,4]dioxin-7-yl)acenaphtho[1,2-b]quinoxaline (1) are highlighted. It is noted that P1 has an ambipolar (n- and p-doping processes) character in 0.1 M tetrabutylammonium hexafluorophosphate/dichloromethame solution and switches to a transmissive blue state upon oxidation. Furthermore, this new polymeric electrochromic candidate exhibits high redox stability, high coloration efficiency and/or contrast ratio, high percent transmittance (%T) and low response time (1.0 s) with a band gap of 1.10 eV-1.25 eV. (C) 2009 Elsevier Ltd. All rights reserved.
  • Article
    Citation - WoS: 6
    Citation - Scopus: 6
    Electrochemical Copolymerization and Characterization of Dianilines Linked by Polyether Bridge With Aniline
    (Springer, 2010) Tirkes, Seha; Onal, Ahmet M.
    Copolymer of aniline and triethylene glycol bis(o-aminophenyl) ether was synthesized by constant potential electrolysis. Cyclic voltammogram of the copolymer films recorded in the monomer-free electrolytic solution revealed that the redox behavior of the films approaches to that of poly(triethylene glycol bis(o-aminophenyl) ether) with increasing amount of triethylene glycol bis(o-aminophenyl) in the feed ratio. Copolymerization was investigated by in situ recording the changes in the electronic absorption spectrum during electrolysis. The free standing copolymer film was characterized utilizing Fourier transform infrared spectrometer, and spectroelectrochemical behavior of the copolymer was investigated via in situ UV-vis spectroscopic technique. Besides the electron spin resonance study of the copolymer film, the different morphologies of the polymers were examined by scanning electron microscopy and the copolymerization was confirmed. The temperature dependence conductivity of the copolymer film was measured by four-probe technique in the temperature range of 100-300 K, and the calculated parameters showed that conduction mechanism fits to variable range hopping.
  • Article
    Citation - WoS: 14
    Citation - Scopus: 12
    Electrochemical Synthesis of New Conjugated Polymers Based on Carbazole and Furan Units
    (Elsevier Science Sa, 2015) Oguzturk, H. Esra; Tirkes, Seha; Onal, Ahmet M.
    In this study, synthesis of four new monomers; 3,6-di(2-furyl)-9H-carbazole (M1), 3,6-di(2-furyl)-9-ethyl-carbazole (M2), 2,7-di(2-furyl)-9-H-carbazole (M3), 2,7-di(2-furyl)-9-(tridecan-7-yl)-9H-carbazole (M4), was achieved via Stifle cross-coupling reaction. The monomers were electrochemically polymerized, via repetitive cycling in acetonitrile-tetrabutylammonium hexafluorophosphate electrolytic medium. Optical and electrochemical properties of the monomers and their corresponding polymers were investigated and it was found that optical properties show slight variations depending on the connectivity between the carbazole and furan moieties. However, all the monomers synthesized in this work exhibited an irreversible oxidation peak at around 1.0 V. Electrochemically obtained polymer films, on the other hand, exhibited quasi-reversible redox behavior due to doping/dedoping of the polymers which was accompanied by a reversible electrochromic behavior. Their band gap values (E-g) were elucidated utilizing spectroelectrochemical data and it was found that polymers obtained from 2,7-substituted carbazole derivatives have slightly lower band gap values. Furthermore, scanning electron micrographs were used for morphological examinations. (C) 2015 Elsevier B.V. All rights reserved.
  • Article
    Citation - WoS: 1
    Citation - Scopus: 1
    Electrochemical Polymerization and Characterization of Polyether-Substituted Aniline Derivatives
    (Wiley, 2007) Tirkes, Seha; Cihaner, Atilla; Oenal, Ahmet M.
    New compounds consisting of aniline units linked by polyether bridges have been synthesized and their electrochemical polymerization was performed via constant potential electrolysis and cyclic voltammetry in an aqueous solution containing 3.0 moI L-1 H2SO4. Chemical polymerization was carried out using (NH4)(2)S2O8 as oxidizing agent. It was found that both methods gave the same polymer product without any cleavage of the polyether bridge between aniline rings. The polymers were characterized using the Fourier transform infrared spectroscopic technique and the thermal behavior of electrochemically prepared polymers was investigated using thermogravimetric analysis. Spectroelectrochemical properties of the films were investigated using the in situ UV-visible spectroscopic technique. (c) 2007 Society of Chemical Industry.
  • Article
    Citation - WoS: 17
    Citation - Scopus: 19
    Physical and Mechanical Performance of Bentonite and Barite Loaded Low Density Polyethylene Composites: Influence of Surface Silanization of Minerals
    (Sage Publications Ltd, 2020) Elkawash, Hesham; Tirkes, Seha; Hacioglu, Firat; Tayfun, Umit
    In this study, two kinds of mineral fillers, bentonite (BNT) and barite (BRT), were incorporated into low density polyethylene (LDPE) by extrusion process. Silane treatment was applied to BRT and BNT surfaces in order to increase their compatibility with LDPE matrix. Surface characteristics of fillers were examined by Fourier transformed infrared spectroscopy (FTIR). LDPE-based composites were prepared at a constant concentration of 10%wt for each additives. Test samples were shaped by injection molding process. Mechanical, thermo-mechanical, water repellency, melt-flow and morphological characterizations of LDPE and its composites were performed by tensile and impact tests, dynamic mechanical analysis (DMA), water absorption test, melt flow index (MFI) measurements and scanning electron microscopy (SEM) technique, respectively. Test results showed that surface treatments led to increase for final properties of composites since they promoted to stronger adhesion between minerals and LDPE matrix compared to untreated ones. Tensile and impact strength values, storage modulus and glass transition temperature of LDPE were improved by inclusion of silane treated minerals. BRT and BNT additions caused no remarkable changes with regard to MFI of LDPE. Additionally, silane modified mineral filled composites exhibited remarkable water resistance behavior. According to SEM analysis of composites, silane treated BNT and BRT containing samples displayed homogeneous dispersions into LDPE phase whereas debondings were observed for untreated BNT and BRT filled composites due to their weak adhesion to polymer matrix.
  • Article
    Citation - WoS: 14
    Citation - Scopus: 19
    Influence of Carbon Nanotube Inclusions To Electrical, Thermal, Physical and Mechanical Behaviors of Carbon-Fiber Abs Composites
    (Springer Japan Kk, 2022) Akar, Alinda Oyku; Yildiz, Umit Hakan; Tirkes, Seha; Tayfun, Umit; Hacivelioglu, Ferda
    Acrylonitrile-butadiene-styrene (ABS) terpolymer was compounded with short carbon fiber (CF) and carbon nanotube (CNT) using a micro-extruder followed by the injection molding process. Composite samples were fabricated with loading ratios of 20 wt.% CF and 0.1, 0.5 and 1.0 wt.% of CNT. Mechanical, electrical, thermo-mechanical, thermal, melt-flow, and structural investigations of ABS-based composites were conducted by performing tensile, impact, hardness, and wear tests, conductive atomic force microscopy (AFM), dynamic mechanical analysis (DMA), thermal gravimetric analysis (TGA), melt flow rate test (MFR), scanning electron microscopy (SEM) characterization techniques, respectively. According to mechanical test data of resultant composites including tensile and impact test findings, CNT additions led to the remarkable increase in tensile strength and impact resistance for CF reinforced ABS composites. The formation of synergy between CNT nanoparticles and CF was confirmed by electrical conduction results. The conductive path in ABS/CF composite system was achieved by the incorporation of CNT with different loading levels. SEM micrographs of composites proved that CNT nanoparticles exhibited homogeneous dispersion into ABS matrix for lower loadings. [GRAPHICS] .